Class: Module

Inherits:
Object show all
Defined in:
object.c,
class.c,
object.c

Overview

*********************************************************************

A Module is a collection of methods and constants. The
methods in a module may be instance methods or module methods.
Instance methods appear as methods in a class when the module is
included, module methods do not. Conversely, module methods may be
called without creating an encapsulating object, while instance
methods may not. (See Module#module_function.)

In the descriptions that follow, the parameter <i>sym</i> refers
to a symbol, which is either a quoted string or a
Symbol (such as <code>:name</code>).

   module Mod
     include Math
     CONST = 1
     def meth
       #  ...
     end
   end
   Mod.class              #=> Module
   Mod.constants          #=> [:CONST, :PI, :E]
   Mod.instance_methods   #=> [:meth]

Direct Known Subclasses

Class

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#newObject #new {|mod| ... } ⇒ Object

Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module like #module_eval.

fred = Module.new do
  def meth1
    "hello"
  end
  def meth2
    "bye"
  end
end
a = "my string"
a.extend(fred)   #=> "my string"
a.meth1          #=> "hello"
a.meth2          #=> "bye"

Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.

Overloads:

  • #new {|mod| ... } ⇒ Object

    Yields:

    • (mod)


1947
1948
1949
1950
1951
1952
1953
1954
# File 'object.c', line 1947

static VALUE
rb_mod_initialize(VALUE module)
{
    if (rb_block_given_p()) {
	rb_mod_module_exec(1, &module, module);
    }
    return Qnil;
}

Class Method Details

.constantsArray .constants(inherited) ⇒ Array

In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.

Module.constants.first(4)
   # => [:ARGF, :ARGV, :ArgumentError, :Array]

Module.constants.include?(:SEEK_SET)   # => false

class IO
  Module.constants.include?(:SEEK_SET) # => true
end

The second form calls the instance method constants.

Overloads:



400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# File 'eval.c', line 400

static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE klass;
    VALUE cbase = 0;
    void *data = 0;

    if (argc > 0 || mod != rb_cModule) {
	return rb_mod_constants(argc, argv, mod);
    }

    while (cref) {
	klass = CREF_CLASS(cref);
	if (!CREF_PUSHED_BY_EVAL(cref) &&
	    !NIL_P(klass)) {
	    data = rb_mod_const_at(CREF_CLASS(cref), data);
	    if (!cbase) {
		cbase = klass;
	    }
	}
	cref = CREF_NEXT(cref);
    }

    if (cbase) {
	data = rb_mod_const_of(cbase, data);
    }
    return rb_const_list(data);
}

.nestingArray

Returns the list of Modules nested at the point of call.

module M1
  module M2
    $a = Module.nesting
  end
end
$a           #=> [M1::M2, M1]
$a[0].name   #=> "M1::M2"

Returns:



361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# File 'eval.c', line 361

static VALUE
rb_mod_nesting(VALUE _)
{
    VALUE ary = rb_ary_new();
    const rb_cref_t *cref = rb_vm_cref();

    while (cref && CREF_NEXT(cref)) {
	VALUE klass = CREF_CLASS(cref);
	if (!CREF_PUSHED_BY_EVAL(cref) &&
	    !NIL_P(klass)) {
	    rb_ary_push(ary, klass);
	}
	cref = CREF_NEXT(cref);
    }
    return ary;
}

.used_modulesArray

Returns an array of all modules used in the current scope. The ordering of modules in the resulting array is not defined.

module A
  refine Object do
  end
end

module B
  refine Object do
  end
end

using A
using B
p Module.used_modules

produces:

[B, A]

Returns:



1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
# File 'eval.c', line 1653

static VALUE
rb_mod_s_used_modules(VALUE _)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE ary = rb_ary_new();

    while (cref) {
	if (!NIL_P(CREF_REFINEMENTS(cref))) {
	    rb_hash_foreach(CREF_REFINEMENTS(cref), used_modules_i, ary);
	}
	cref = CREF_NEXT(cref);
    }

    return rb_funcall(ary, rb_intern("uniq"), 0);
}

Instance Method Details

#<(other) ⇒ true, ...

Returns true if mod is a subclass of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

Returns:

  • (true, false, nil)


1828
1829
1830
1831
1832
1833
# File 'object.c', line 1828

static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_class_inherited_p(mod, arg);
}

#<=(other) ⇒ true, ...

Returns true if mod is a subclass of other or is the same as other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

Returns:

  • (true, false, nil)


1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
# File 'object.c', line 1800

VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qtrue;
    if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
	rb_raise(rb_eTypeError, "compared with non class/module");
    }
    if (class_search_ancestor(mod, RCLASS_ORIGIN(arg))) {
	return Qtrue;
    }
    /* not mod < arg; check if mod > arg */
    if (class_search_ancestor(arg, mod)) {
	return Qfalse;
    }
    return Qnil;
}

#<=>(other_module) ⇒ -1, ...

Comparison—Returns -1, 0, +1 or nil depending on whether module includes other_module, they are the same, or if module is included by other_module.

Returns nil if module has no relationship with other_module, if other_module is not a module, or if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
# File 'object.c', line 1888

static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
    VALUE cmp;

    if (mod == arg) return INT2FIX(0);
    if (!CLASS_OR_MODULE_P(arg)) {
	return Qnil;
    }

    cmp = rb_class_inherited_p(mod, arg);
    if (NIL_P(cmp)) return Qnil;
    if (cmp) {
	return INT2FIX(-1);
    }
    return INT2FIX(1);
}

#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean

Equality — At the Object level, #== returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike #==, the #equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The #eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For any pair of objects where #eql? returns true, the #hash value of both objects must be equal. So any subclass that overrides #eql? should also override #hash appropriately.

For objects of class Object, #eql? is synonymous with #==. Subclasses normally continue this tradition by aliasing #eql? to their overridden #== method, but there are exceptions. Numeric types, for example, perform type conversion across #==, but not across #eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false

Overloads:

  • #==(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #equal?(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #eql?(other) ⇒ Boolean

    Returns:

    • (Boolean)


209
210
211
212
213
214
# File 'object.c', line 209

MJIT_FUNC_EXPORTED VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
    if (obj1 == obj2) return Qtrue;
    return Qfalse;
}

#===(obj) ⇒ Boolean

Case Equality—Returns true if obj is an instance of mod or an instance of one of mod’s descendants. Of limited use for modules, but can be used in case statements to classify objects by class.

Returns:

  • (Boolean)


1774
1775
1776
1777
1778
# File 'object.c', line 1774

static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
    return rb_obj_is_kind_of(arg, mod);
}

#>(other) ⇒ true, ...

Returns true if mod is an ancestor of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

Returns:

  • (true, false, nil)


1869
1870
1871
1872
1873
1874
# File 'object.c', line 1869

static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_mod_ge(mod, arg);
}

#>=(other) ⇒ true, ...

Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

Returns:

  • (true, false, nil)


1848
1849
1850
1851
1852
1853
1854
1855
1856
# File 'object.c', line 1848

static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
    if (!CLASS_OR_MODULE_P(arg)) {
	rb_raise(rb_eTypeError, "compared with non class/module");
    }

    return rb_class_inherited_p(arg, mod);
}

#alias_method(new_name, old_name) ⇒ self

Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.

module Mod
  alias_method :orig_exit, :exit
  def exit(code=0)
    puts "Exiting with code #{code}"
    orig_exit(code)
  end
end
include Mod
exit(99)

produces:

Exiting with code 99

Returns:

  • (self)


1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
# File 'vm_method.c', line 1655

static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
    ID oldid = rb_check_id(&oldname);
    if (!oldid) {
	rb_print_undef_str(mod, oldname);
    }
    rb_alias(mod, rb_to_id(newname), oldid);
    return mod;
}

#ancestorsArray

Returns a list of modules included/prepended in mod (including mod itself).

module Mod
  include Math
  include Comparable
  prepend Enumerable
end

Mod.ancestors        #=> [Enumerable, Mod, Comparable, Math]
Math.ancestors       #=> [Math]
Enumerable.ancestors #=> [Enumerable]

Returns:



1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
# File 'class.c', line 1098

VALUE
rb_mod_ancestors(VALUE mod)
{
    VALUE p, ary = rb_ary_new();

    for (p = mod; p; p = RCLASS_SUPER(p)) {
        if (p != RCLASS_ORIGIN(p)) continue;
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    rb_ary_push(ary, RBASIC(p)->klass);
	}
        else {
	    rb_ary_push(ary, p);
	}
    }
    return ary;
}

#append_features(mod) ⇒ Object (private)

When this module is included in another, Ruby calls #append_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include.



1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
# File 'eval.c', line 1262

static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
    if (!CLASS_OR_MODULE_P(include)) {
	Check_Type(include, T_CLASS);
    }
    rb_include_module(include, module);

    return module;
}

#attr(name, ...) ⇒ nil #attr(name, true) ⇒ nil #attr(name, false) ⇒ nil

The first form is equivalent to #attr_reader. The second form is equivalent to attr_accessor(name) but deprecated. The last form is equivalent to attr_reader(name) but deprecated.

Overloads:

  • #attr(name, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr(name, true) ⇒ nil

    Returns:

    • (nil)
  • #attr(name, false) ⇒ nil

    Returns:

    • (nil)


2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
# File 'object.c', line 2335

VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
    if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
	rb_warning("optional boolean argument is obsoleted");
	rb_attr(klass, id_for_attr(klass, argv[0]), 1, RTEST(argv[1]), TRUE);
	return Qnil;
    }
    return rb_mod_attr_reader(argc, argv, klass);
}

#attr_accessor(symbol, ...) ⇒ nil #attr_accessor(string, ...) ⇒ nil

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. String arguments are converted to symbols.

module Mod
  attr_accessor(:one, :two)
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]

Overloads:

  • #attr_accessor(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_accessor(string, ...) ⇒ nil

    Returns:

    • (nil)


2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
# File 'object.c', line 2384

static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(klass, argv[i]), TRUE, TRUE, TRUE);
    }
    return Qnil;
}

#attr_reader(symbol, ...) ⇒ nil #attr(symbol, ...) ⇒ nil #attr_reader(string, ...) ⇒ nil #attr(string, ...) ⇒ nil

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name” on each name in turn. String arguments are converted to symbols.

Overloads:

  • #attr_reader(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_reader(string, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr(string, ...) ⇒ nil

    Returns:

    • (nil)


2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
# File 'object.c', line 2310

static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(klass, argv[i]), TRUE, FALSE, TRUE);
    }
    return Qnil;
}

#attr_writer(symbol, ...) ⇒ nil #attr_writer(string, ...) ⇒ nil

Creates an accessor method to allow assignment to the attribute symbol.id2name. String arguments are converted to symbols.

Overloads:

  • #attr_writer(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_writer(string, ...) ⇒ nil

    Returns:

    • (nil)


2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
# File 'object.c', line 2356

static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(klass, argv[i]), FALSE, TRUE, TRUE);
    }
    return Qnil;
}

#autoloadnil

Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed in the namespace of mod.

module A
end
A.autoload(:B, "b")
A::B.doit            # autoloads "b"

Returns:

  • (nil)


1162
1163
1164
1165
1166
1167
1168
1169
1170
# File 'load.c', line 1162

static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
    ID id = rb_to_id(sym);

    FilePathValue(file);
    rb_autoload_str(mod, id, file);
    return Qnil;
}

#autoload?(name, inherit = true) ⇒ String?

Returns filename to be loaded if name is registered as autoload in the namespace of mod or one of its ancestors.

module A
end
A.autoload(:B, "b")
A.autoload?(:B)            #=> "b"

If inherit is false, the lookup only checks the autoloads in the receiver:

class A
  autoload :CONST, "const.rb"
end

class B < A
end

B.autoload?(:CONST)          #=> "const.rb", found in A (ancestor)
B.autoload?(:CONST, false)   #=> nil, not found in B itself

Returns:



1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
# File 'load.c', line 1198

static VALUE
rb_mod_autoload_p(int argc, VALUE *argv, VALUE mod)
{
    int recur = (rb_check_arity(argc, 1, 2) == 1) ? TRUE : RTEST(argv[1]);
    VALUE sym = argv[0];

    ID id = rb_check_id(&sym);
    if (!id) {
	return Qnil;
    }
    return rb_autoload_at_p(mod, id, recur);
}

#class_eval(string[, filename [, lineno]]) ⇒ Object #class_eval {|mod| ... } ⇒ Object #module_eval(string[, filename [, lineno]]) ⇒ Object #module_eval {|mod| ... } ⇒ Object

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class

Overloads:

  • #class_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #class_eval {|mod| ... } ⇒ Object

    Yields:

    • (mod)

    Returns:

  • #module_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #module_eval {|mod| ... } ⇒ Object

    Yields:

    • (mod)

    Returns:



2060
2061
2062
2063
2064
# File 'vm_eval.c', line 2060

static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod, RB_PASS_CALLED_KEYWORDS);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!

Overloads:

  • #module_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:

  • #class_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:



2094
2095
2096
2097
2098
# File 'vm_eval.c', line 2094

static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, argc, argv, RB_PASS_CALLED_KEYWORDS);
}

#class_variable_defined?(symbol) ⇒ Boolean #class_variable_defined?(string) ⇒ Boolean

Returns true if the given class variable is defined in obj. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_defined?(:@@foo)    #=> true
Fred.class_variable_defined?(:@@bar)    #=> false

Overloads:

  • #class_variable_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #class_variable_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)


3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
# File 'object.c', line 3025

static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, class);

    if (!id) {
	return Qfalse;
    }
    return rb_cvar_defined(obj, id);
}

#class_variable_get(symbol) ⇒ Object #class_variable_get(string) ⇒ Object

Returns the value of the given class variable (or throws a NameError exception). The @@ part of the variable name should be included for regular class variables. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_get(:@@foo)     #=> 99

Overloads:



2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
# File 'object.c', line 2968

static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, class);

    if (!id) {
	rb_name_err_raise("uninitialized class variable %1$s in %2$s",
			  obj, iv);
    }
    return rb_cvar_get(obj, id);
}

#class_variable_set(symbol, obj) ⇒ Object #class_variable_set(string, obj) ⇒ Object

Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.

class Fred
  @@foo = 99
  def foo
    @@foo
  end
end
Fred.class_variable_set(:@@foo, 101)     #=> 101
Fred.new.foo                             #=> 101

Overloads:

  • #class_variable_set(symbol, obj) ⇒ Object

    Returns:

  • #class_variable_set(string, obj) ⇒ Object

    Returns:



3000
3001
3002
3003
3004
3005
3006
3007
# File 'object.c', line 3000

static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_var(obj, iv, class);
    if (!id) id = rb_intern_str(iv);
    rb_cvar_set(obj, id, val);
    return val;
}

#class_variables(inherit = true) ⇒ Array

Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false.

class One
  @@var1 = 1
end
class Two < One
  @@var2 = 2
end
One.class_variables          #=> [:@@var1]
Two.class_variables          #=> [:@@var2, :@@var1]
Two.class_variables(false)   #=> [:@@var2]

Returns:



3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
# File 'variable.c', line 3236

VALUE
rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
{
    bool inherit = true;
    st_table *tbl;

    if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
    if (inherit) {
	tbl = mod_cvar_of(mod, 0);
    }
    else {
	tbl = mod_cvar_at(mod, 0);
    }
    return cvar_list(tbl);
}

#const_defined?(sym, inherit = true) ⇒ Boolean #const_defined?(str, inherit = true) ⇒ Boolean

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar

Overloads:

  • #const_defined?(sym, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #const_defined?(str, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
# File 'object.c', line 2605

static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
	if (!rb_is_const_sym(name)) goto wrong_name;
	id = rb_check_id(&name);
	if (!id) return Qfalse;
	return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
	rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
	rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
	mod = rb_cObject;
	p += 2;
	pbeg = p;
    }

    while (p < pend) {
	VALUE part;
	long len, beglen;

	while (p < pend && *p != ':') p++;

	if (pbeg == p) goto wrong_name;

	id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
	beglen = pbeg-path;

	if (p < pend && p[0] == ':') {
	    if (p + 2 >= pend || p[1] != ':') goto wrong_name;
	    p += 2;
	    pbeg = p;
	}

	if (!id) {
	    part = rb_str_subseq(name, beglen, len);
	    OBJ_FREEZE(part);
	    if (!rb_is_const_name(part)) {
		name = part;
		goto wrong_name;
	    }
	    else {
		return Qfalse;
	    }
	}
	if (!rb_is_const_id(id)) {
	    name = ID2SYM(id);
	    goto wrong_name;
	}

#if 0
        mod = rb_const_search(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
        if (mod == Qundef) return Qfalse;
#else
        if (!RTEST(recur)) {
	    if (!rb_const_defined_at(mod, id))
		return Qfalse;
            if (p == pend) return Qtrue;
	    mod = rb_const_get_at(mod, id);
	}
        else if (beglen == 0) {
            if (!rb_const_defined(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get(mod, id);
        }
        else {
            if (!rb_const_defined_from(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get_from(mod, id);
        }
#endif

	if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
	    rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
		     QUOTE(name));
	}
    }

    return Qtrue;
}

#const_get(sym, inherit = true) ⇒ Object #const_get(str, inherit = true) ⇒ Object

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get ‘foobar’ #=> NameError: wrong constant name foobar

Overloads:

  • #const_get(sym, inherit = true) ⇒ Object

    Returns:

  • #const_get(str, inherit = true) ⇒ Object

    Returns:



2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
# File 'object.c', line 2435

static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
	if (!rb_is_const_sym(name)) goto wrong_name;
	id = rb_check_id(&name);
	if (!id) return rb_const_missing(mod, name);
	return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
	rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
	rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
	mod = rb_cObject;
	p += 2;
	pbeg = p;
    }

    while (p < pend) {
	VALUE part;
	long len, beglen;

	while (p < pend && *p != ':') p++;

	if (pbeg == p) goto wrong_name;

	id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
	beglen = pbeg-path;

	if (p < pend && p[0] == ':') {
	    if (p + 2 >= pend || p[1] != ':') goto wrong_name;
	    p += 2;
	    pbeg = p;
	}

	if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
	    rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
		     QUOTE(name));
	}

	if (!id) {
	    part = rb_str_subseq(name, beglen, len);
	    OBJ_FREEZE(part);
	    if (!rb_is_const_name(part)) {
		name = part;
		goto wrong_name;
	    }
	    else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
		part = rb_str_intern(part);
		mod = rb_const_missing(mod, part);
		continue;
	    }
	    else {
		rb_mod_const_missing(mod, part);
	    }
	}
	if (!rb_is_const_id(id)) {
	    name = ID2SYM(id);
	    goto wrong_name;
	}
#if 0
        mod = rb_const_get_0(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
#else
        if (!RTEST(recur)) {
            mod = rb_const_get_at(mod, id);
        }
        else if (beglen == 0) {
            mod = rb_const_get(mod, id);
        }
        else {
            mod = rb_const_get_from(mod, id);
        }
#endif
    }

    return mod;
}

#const_missing(sym) ⇒ Object

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred is assumed to be in file fred.rb). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Class not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  klass = const_get(name)
  return klass if klass
  raise "Class not found: #{name}"
end

Returns:



1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
# File 'variable.c', line 1738

VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
    VALUE ref = GET_EC()->private_const_reference;
    rb_vm_pop_cfunc_frame();
    if (ref) {
	rb_name_err_raise("private constant %2$s::%1$s referenced",
			  ref, name);
    }
    uninitialized_constant(klass, name);

    UNREACHABLE_RETURN(Qnil);
}

#const_set(sym, obj) ⇒ Object #const_set(str, obj) ⇒ Object

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set(‘foobar’, 42) #=> NameError: wrong constant name foobar

Overloads:



2554
2555
2556
2557
2558
2559
2560
2561
2562
# File 'object.c', line 2554

static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
    ID id = id_for_var(mod, name, const);
    if (!id) id = rb_intern_str(name);
    rb_const_set(mod, id, value);

    return value;
}

#const_source_location(sym, inherit = true) ⇒ Array, Integer #const_source_location(str, inherit = true) ⇒ Array, Integer

Returns the Ruby source filename and line number containing first definition of constant specified. If the named constant is not found, nil is returned. If the constant is found, but its source location can not be extracted (constant is defined in C code), empty array is returned.

inherit specifies whether to lookup in mod.ancestors (true by default).

# test.rb:
class A
  C1 = 1
end

module M
  C2 = 2
end

class B < A
  include M
  C3 = 3
end

class A # continuation of A definition
end

p B.const_source_location('C3')           # => ["test.rb", 11]
p B.const_source_location('C2')           # => ["test.rb", 6]
p B.const_source_location('C1')           # => ["test.rb", 2]

p B.const_source_location('C2', false)    # => nil  -- don't lookup in ancestors

p Object.const_source_location('B')       # => ["test.rb", 9]
p Object.const_source_location('A')       # => ["test.rb", 1]  -- note it is first entry, not "continuation"

p B.const_source_location('A')            # => ["test.rb", 1]  -- because Object is in ancestors
p M.const_source_location('A')            # => ["test.rb", 1]  -- Object is not ancestor, but additionally checked for modules

p Object.const_source_location('A::C1')   # => ["test.rb", 2]  -- nesting is supported
p Object.const_source_location('String')  # => []  -- constant is defined in C code

Overloads:



2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
# File 'object.c', line 2758

static VALUE
rb_mod_const_source_location(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur, loc = Qnil;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return Qnil;
        return RTEST(recur) ? rb_const_source_location(mod, id) : rb_const_source_location_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
        rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else {
                return Qnil;
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }
        if (p < pend) {
            if (RTEST(recur)) {
                mod = rb_const_get(mod, id);
            }
            else {
                mod = rb_const_get_at(mod, id);
            }
            if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
                rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                         QUOTE(name));
            }
        }
        else {
            if (RTEST(recur)) {
                loc = rb_const_source_location(mod, id);
            }
            else {
                loc = rb_const_source_location_at(mod, id);
            }
            break;
        }
        recur = Qfalse;
    }

    return loc;
}

#constants(inherit = true) ⇒ Array

Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false.

The implementation makes no guarantees about the order in which the constants are yielded.

IO.constants.include?(:SYNC)        #=> true
IO.constants(false).include?(:SYNC) #=> false

Also see Module#const_defined?.

Returns:



2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
# File 'variable.c', line 2625

VALUE
rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
{
    bool inherit = true;

    if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);

    if (inherit) {
	return rb_const_list(rb_mod_const_of(mod, 0));
    }
    else {
	return rb_local_constants(mod);
    }
}

#define_method(symbol, method) ⇒ Object #define_method(symbol) { ... } ⇒ Object

Defines an instance method in the receiver. The method parameter can be a Proc, a Method or an UnboundMethod object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they’re used as method parameters. This block is evaluated using #instance_eval.

class A
  def fred
    puts "In Fred"
  end
  def create_method(name, &block)
    self.class.define_method(name, &block)
  end
  define_method(:wilma) { puts "Charge it!" }
  define_method(:flint) {|name| puts "I'm #{name}!"}
end
class B < A
  define_method(:barney, instance_method(:fred))
end
a = B.new
a.barney
a.wilma
a.flint('Dino')
a.create_method(:betty) { p self }
a.betty

produces:

In Fred
Charge it!
I'm Dino!
#<B:0x401b39e8>

Overloads:

  • #define_method(symbol) { ... } ⇒ Object

    Yields:



2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
# File 'proc.c', line 2027

static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
    ID id;
    VALUE body;
    VALUE name;
    const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
    const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
    const rb_scope_visibility_t *scope_visi = &default_scope_visi;
    int is_method = FALSE;

    if (cref) {
	scope_visi = CREF_SCOPE_VISI(cref);
    }

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    id = rb_check_id(&name);
    if (argc == 1) {
#if PROC_NEW_REQUIRES_BLOCK
	body = rb_block_lambda();
#else
	const rb_execution_context_t *ec = GET_EC();
	VALUE block_handler = rb_vm_frame_block_handler(ec->cfp);
	if (block_handler == VM_BLOCK_HANDLER_NONE) rb_raise(rb_eArgError, proc_without_block);

	switch (vm_block_handler_type(block_handler)) {
	  case block_handler_type_proc:
	    body = VM_BH_TO_PROC(block_handler);
	    break;
	  case block_handler_type_symbol:
	    body = rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
	    break;
	  case block_handler_type_iseq:
	  case block_handler_type_ifunc:
	    body = rb_vm_make_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc);
	}
#endif
    }
    else {
	body = argv[1];

	if (rb_obj_is_method(body)) {
	    is_method = TRUE;
	}
	else if (rb_obj_is_proc(body)) {
	    is_method = FALSE;
	}
	else {
	    rb_raise(rb_eTypeError,
		     "wrong argument type %s (expected Proc/Method/UnboundMethod)",
		     rb_obj_classname(body));
	}
    }
    if (!id) id = rb_to_id(name);

    if (is_method) {
	struct METHOD *method = (struct METHOD *)DATA_PTR(body);
	if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
	    !RTEST(rb_class_inherited_p(mod, method->me->owner))) {
	    if (FL_TEST(method->me->owner, FL_SINGLETON)) {
		rb_raise(rb_eTypeError,
			 "can't bind singleton method to a different class");
	    }
	    else {
		rb_raise(rb_eTypeError,
			 "bind argument must be a subclass of % "PRIsVALUE,
			 method->me->owner);
	    }
	}
	rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
	if (scope_visi->module_func) {
	    rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
	}
	RB_GC_GUARD(body);
    }
    else {
	VALUE procval = rb_proc_dup(body);
	if (vm_proc_iseq(procval) != NULL) {
	    rb_proc_t *proc;
	    GetProcPtr(procval, proc);
	    proc->is_lambda = TRUE;
	    proc->is_from_method = TRUE;
	}
	rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
	if (scope_visi->module_func) {
	    rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
	}
    }

    return ID2SYM(id);
}

#deprecate_constant(symbol, ...) ⇒ Object

Makes a list of existing constants deprecated. Attempt to refer to them will produce a warning.

module HTTP
  NotFound = Exception.new
  NOT_FOUND = NotFound # previous version of the library used this name

  deprecate_constant :NOT_FOUND
end

HTTP::NOT_FOUND
# warning: constant HTTP::NOT_FOUND is deprecated


3010
3011
3012
3013
3014
3015
# File 'variable.c', line 3010

VALUE
rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
    return obj;
}

#extend_object(obj) ⇒ Object (private)

Extends the specified object by adding this module’s constants and methods (which are added as singleton methods). This is the callback method used by Object#extend.

module Picky
  def Picky.extend_object(o)
    if String === o
      puts "Can't add Picky to a String"
    else
      puts "Picky added to #{o.class}"
      super
    end
  end
end
(s = Array.new).extend Picky  # Call Object.extend
(s = "quick brown fox").extend Picky

produces:

Picky added to Array
Can't add Picky to a String

Returns:



1732
1733
1734
1735
1736
1737
# File 'eval.c', line 1732

static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
    rb_extend_object(obj, mod);
    return obj;
}

#extended(_y) ⇒ Object (private)

call-seq:

extended(othermod)

The equivalent of included, but for extended modules.

module A
  def self.extended(mod)
    puts "#{self} extended in #{mod}"
  end
end
module Enumerable
  extend A
end
 # => prints "A extended in Enumerable"


1155
1156
1157
1158
1159
# File 'object.c', line 1155

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#freezeObject

Prevents further modifications to mod.

This method returns self.



1757
1758
1759
1760
1761
1762
# File 'object.c', line 1757

static VALUE
rb_mod_freeze(VALUE mod)
{
    rb_class_name(mod);
    return rb_obj_freeze(mod);
}

#includeself

Invokes Module.append_features on each parameter in reverse order.

Returns:

  • (self)


1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
# File 'eval.c', line 1280

static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_append_features, id_included;

    CONST_ID(id_append_features, "append_features");
    CONST_ID(id_included, "included");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_append_features, 1, module);
	rb_funcall(argv[argc], id_included, 1, module);
    }
    return module;
}

#include?Boolean

Returns true if module is included in mod or one of mod’s ancestors.

module A
end
class B
  include A
end
class C < B
end
B.include?(A)   #=> true
C.include?(A)   #=> true
A.include?(A)   #=> false

Returns:

  • (Boolean)


1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
# File 'class.c', line 1066

VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
    VALUE p;

    Check_Type(mod2, T_MODULE);
    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    if (RBASIC(p)->klass == mod2) return Qtrue;
	}
    }
    return Qfalse;
}

#included(_y) ⇒ Object (private)

call-seq:

included(othermod)

Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features if your code wants to perform some action when a module is included in another.

module A
  def A.included(mod)
    puts "#{self} included in #{mod}"
  end
end
module Enumerable
  include A
end
 # => prints "A included in Enumerable"


1155
1156
1157
1158
1159
# File 'object.c', line 1155

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#included_modulesArray

Returns the list of modules included in mod.

module Mixin
end

module Outer
  include Mixin
end

Mixin.included_modules   #=> []
Outer.included_modules   #=> [Mixin]

Returns:



1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
# File 'class.c', line 1030

VALUE
rb_mod_included_modules(VALUE mod)
{
    VALUE ary = rb_ary_new();
    VALUE p;
    VALUE origin = RCLASS_ORIGIN(mod);

    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) {
	    VALUE m = RBASIC(p)->klass;
	    if (RB_TYPE_P(m, T_MODULE))
		rb_ary_push(ary, m);
	}
    }
    return ary;
}

#initialize_clone(orig) ⇒ Object

:nodoc:



1957
1958
1959
1960
1961
1962
1963
1964
1965
# File 'object.c', line 1957

static VALUE
rb_mod_initialize_clone(VALUE clone, VALUE orig)
{
    VALUE ret;
    ret = rb_obj_init_dup_clone(clone, orig);
    if (OBJ_FROZEN(orig))
        rb_class_name(clone);
    return ret;
}

#initialize_copy(orig) ⇒ Object

:nodoc:



312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# File 'class.c', line 312

VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
    /* cloned flag is refer at constant inline cache
     * see vm_get_const_key_cref() in vm_insnhelper.c
     */
    FL_SET(clone, RCLASS_CLONED);
    FL_SET(orig , RCLASS_CLONED);

    if (RB_TYPE_P(clone, T_CLASS)) {
	class_init_copy_check(clone, orig);
    }
    if (!OBJ_INIT_COPY(clone, orig)) return clone;
    if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
	RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
	rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
    }
    RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
    RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
    if (RCLASS_IV_TBL(clone)) {
	st_free_table(RCLASS_IV_TBL(clone));
	RCLASS_IV_TBL(clone) = 0;
    }
    if (RCLASS_CONST_TBL(clone)) {
	rb_free_const_table(RCLASS_CONST_TBL(clone));
	RCLASS_CONST_TBL(clone) = 0;
    }
    RCLASS_M_TBL(clone) = 0;
    if (RCLASS_IV_TBL(orig)) {
	st_data_t id;

	rb_iv_tbl_copy(clone, orig);
	CONST_ID(id, "__tmp_classpath__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
	CONST_ID(id, "__classpath__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
	CONST_ID(id, "__classid__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
    }
    if (RCLASS_CONST_TBL(orig)) {
	struct clone_const_arg arg;

	arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0);
	arg.klass = clone;
	rb_id_table_foreach(RCLASS_CONST_TBL(orig), clone_const_i, &arg);
    }
    if (RCLASS_M_TBL(orig)) {
	struct clone_method_arg arg;
	arg.old_klass = orig;
	arg.new_klass = clone;
	RCLASS_M_TBL_INIT(clone);
	rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
    }

    return clone;
}

#instance_method(symbol) ⇒ Object

Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
  def do_a() print "there, "; end
  def do_d() print "Hello ";  end
  def do_e() print "!\n";     end
  def do_v() print "Dave";    end
  Dispatcher = {
    "a" => instance_method(:do_a),
    "d" => instance_method(:do_d),
    "e" => instance_method(:do_e),
    "v" => instance_method(:do_v)
  }
  def interpret(string)
    string.each_char {|b| Dispatcher[b].bind(self).call }
  end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!


1960
1961
1962
1963
1964
1965
1966
1967
1968
# File 'proc.c', line 1960

static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
	rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}

#instance_methods(include_super = true) ⇒ Array

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true

Returns:



1271
1272
1273
1274
1275
# File 'class.c', line 1271

VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}

#method_added(_y) ⇒ Object (private)

call-seq:

method_added(method_name)

Invoked as a callback whenever an instance method is added to the receiver.

module Chatty
  def self.method_added(method_name)
    puts "Adding #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
end

produces:

Adding :some_instance_method


1155
1156
1157
1158
1159
# File 'object.c', line 1155

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#method_defined?(symbol, inherit = true) ⇒ Boolean #method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. Public and protected methods are matched. String arguments are converted to symbols.

module A
  def method1()  end
  def protected_method1()  end
  protected :protected_method1
end
class B
  def method2()  end
  def private_method2()  end
  private :private_method2
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.method_defined? "method1"             #=> true
C.method_defined? "method2"             #=> true
C.method_defined? "method2", true       #=> true
C.method_defined? "method2", false      #=> false
C.method_defined? "method3"             #=> true
C.method_defined? "protected_method1"   #=> true
C.method_defined? "method4"             #=> false
C.method_defined? "private_method2"     #=> false

Overloads:

  • #method_defined?(symbol, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #method_defined?(string, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


1354
1355
1356
1357
1358
1359
# File 'vm_method.c', line 1354

static VALUE
rb_mod_method_defined(int argc, VALUE *argv, VALUE mod)
{
    rb_method_visibility_t visi = check_definition_visibility(mod, argc, argv);
    return (visi == METHOD_VISI_PUBLIC || visi == METHOD_VISI_PROTECTED) ? Qtrue : Qfalse;
}

#method_removed(_y) ⇒ Object (private)

call-seq:

method_removed(method_name)

Invoked as a callback whenever an instance method is removed from the receiver.

module Chatty
  def self.method_removed(method_name)
    puts "Removing #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
  class << self
    remove_method :some_class_method
  end
  remove_method :some_instance_method
end

produces:

Removing :some_instance_method


1155
1156
1157
1158
1159
# File 'object.c', line 1155

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#method_undefined(_y) ⇒ Object (private)



1155
1156
1157
1158
1159
# File 'object.c', line 1155

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#class_eval(string[, filename [, lineno]]) ⇒ Object #class_eval {|mod| ... } ⇒ Object #module_eval(string[, filename [, lineno]]) ⇒ Object #module_eval {|mod| ... } ⇒ Object

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class

Overloads:

  • #class_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #class_eval {|mod| ... } ⇒ Object

    Yields:

    • (mod)

    Returns:

  • #module_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #module_eval {|mod| ... } ⇒ Object

    Yields:

    • (mod)

    Returns:



2060
2061
2062
2063
2064
# File 'vm_eval.c', line 2060

static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod, RB_PASS_CALLED_KEYWORDS);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!

Overloads:

  • #module_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:

  • #class_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:



2094
2095
2096
2097
2098
# File 'vm_eval.c', line 2094

static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, argc, argv, RB_PASS_CALLED_KEYWORDS);
}

#module_function(symbol, ...) ⇒ self (private) #module_function(string, ...) ⇒ self (private)

Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. String arguments are converted to symbols.

module Mod
  def one
    "This is one"
  end
  module_function :one
end
class Cls
  include Mod
  def call_one
    one
  end
end
Mod.one     #=> "This is one"
c = Cls.new
c.call_one  #=> "This is one"
module Mod
  def one
    "This is the new one"
  end
end
Mod.one     #=> "This is one"
c.call_one  #=> "This is the new one"

Overloads:

  • #module_function(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #module_function(string, ...) ⇒ self

    Returns:

    • (self)


2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
# File 'vm_method.c', line 2014

static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id;
    const rb_method_entry_t *me;

    if (!RB_TYPE_P(module, T_MODULE)) {
	rb_raise(rb_eTypeError, "module_function must be called for modules");
    }

    if (argc == 0) {
	rb_scope_module_func_set();
	return module;
    }

    set_method_visibility(module, argc, argv, METHOD_VISI_PRIVATE);

    for (i = 0; i < argc; i++) {
	VALUE m = module;

	id = rb_to_id(argv[i]);
	for (;;) {
	    me = search_method(m, id, 0);
	    if (me == 0) {
		me = search_method(rb_cObject, id, 0);
	    }
	    if (UNDEFINED_METHOD_ENTRY_P(me)) {
		rb_print_undef(module, id, METHOD_VISI_UNDEF);
	    }
	    if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
		break; /* normal case: need not to follow 'super' link */
	    }
	    m = RCLASS_SUPER(m);
	    if (!m)
		break;
	}
	rb_method_entry_set(rb_singleton_class(module), id, me, METHOD_VISI_PUBLIC);
    }
    return module;
}

#nameString

Returns the name of the module mod. Returns nil for anonymous modules.

Returns:



101
102
103
104
105
106
# File 'variable.c', line 101

VALUE
rb_mod_name(VALUE mod)
{
    int permanent;
    return classname(mod, &permanent);
}

#prependself

Invokes Module.prepend_features on each parameter in reverse order.

Returns:

  • (self)


1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
# File 'eval.c', line 1329

static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_prepend_features, id_prepended;

    CONST_ID(id_prepend_features, "prepend_features");
    CONST_ID(id_prepended, "prepended");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_prepend_features, 1, module);
	rb_funcall(argv[argc], id_prepended, 1, module);
    }
    return module;
}

#prepend_features(mod) ⇒ Object (private)

When this module is prepended in another, Ruby calls #prepend_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#prepend.



1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
# File 'eval.c', line 1311

static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
    if (!CLASS_OR_MODULE_P(prepend)) {
	Check_Type(prepend, T_CLASS);
    }
    rb_prepend_module(prepend, module);

    return module;
}

#prepended(_y) ⇒ Object (private)

call-seq:

prepended(othermod)

The equivalent of included, but for prepended modules.

module A
  def self.prepended(mod)
    puts "#{self} prepended to #{mod}"
  end
end
module Enumerable
  prepend A
end
 # => prints "A prepended to Enumerable"


1155
1156
1157
1158
1159
# File 'object.c', line 1155

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#privateself (private) #private(symbol, ...) ⇒ self (private) #private(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols.

module Mod
  def a()  end
  def b()  end
  private
  def c()  end
  private :a
end
Mod.private_instance_methods   #=> [:a, :c]

Note that to show a private method on RDoc, use :doc:.

Overloads:

  • #privateself

    Returns:

    • (self)
  • #private(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #private(string, ...) ⇒ self

    Returns:

    • (self)


1769
1770
1771
1772
1773
# File 'vm_method.c', line 1769

static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PRIVATE);
}

#private_class_method(symbol, ...) ⇒ Object #private_class_method(string, ...) ⇒ Object

Makes existing class methods private. Often used to hide the default constructor new.

String arguments are converted to symbols.

class SimpleSingleton  # Not thread safe
  private_class_method :new
  def SimpleSingleton.create(*args, &block)
    @me = new(*args, &block) if ! @me
    @me
  end
end


1919
1920
1921
1922
1923
1924
# File 'vm_method.c', line 1919

static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE);
    return obj;
}

#private_constant(symbol, ...) ⇒ Object

Makes a list of existing constants private.



2970
2971
2972
2973
2974
2975
# File 'variable.c', line 2970

VALUE
rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
    return obj;
}

#private_instance_methods(include_super = true) ⇒ Array

Returns a list of the private instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

module Mod
  def method1()  end
  private :method1
  def method2()  end
end
Mod.instance_methods           #=> [:method2]
Mod.private_instance_methods   #=> [:method1]

Returns:



1309
1310
1311
1312
1313
# File 'class.c', line 1309

VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}

#private_method_defined?(symbol, inherit = true) ⇒ Boolean #private_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named private method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  private
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                   #=> true
C.private_method_defined? "method1"          #=> false
C.private_method_defined? "method2"          #=> true
C.private_method_defined? "method2", true    #=> true
C.private_method_defined? "method2", false   #=> false
C.method_defined? "method2"                  #=> false

Overloads:

  • #private_method_defined?(symbol, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #private_method_defined?(string, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


1433
1434
1435
1436
1437
# File 'vm_method.c', line 1433

static VALUE
rb_mod_private_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PRIVATE);
}

#protectedself (private) #protected(symbol, ...) ⇒ self (private) #protected(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. String arguments are converted to symbols.

If a method has protected visibility, it is callable only where self of the context is the same as the method. (method definition or instance_eval). This behavior is different from Java’s protected method. Usually private should be used.

Note that a protected method is slow because it can’t use inline cache.

To show a private method on RDoc, use :doc: instead of this.

Overloads:

  • #protectedself

    Returns:

    • (self)
  • #protected(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #protected(string, ...) ⇒ self

    Returns:

    • (self)


1740
1741
1742
1743
1744
# File 'vm_method.c', line 1740

static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PROTECTED);
}

#protected_instance_methods(include_super = true) ⇒ Array

Returns a list of the protected instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

Returns:



1286
1287
1288
1289
1290
# File 'class.c', line 1286

VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}

#protected_method_defined?(symbol, inherit = true) ⇒ Boolean #protected_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named protected method is defined mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                    #=> true
C.protected_method_defined? "method1"         #=> false
C.protected_method_defined? "method2"         #=> true
C.protected_method_defined? "method2", true   #=> true
C.protected_method_defined? "method2", false  #=> false
C.method_defined? "method2"                   #=> true

Overloads:

  • #protected_method_defined?(symbol, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #protected_method_defined?(string, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


1469
1470
1471
1472
1473
# File 'vm_method.c', line 1469

static VALUE
rb_mod_protected_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PROTECTED);
}

#publicself (private) #public(symbol, ...) ⇒ self (private) #public(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols.

Overloads:

  • #publicself

    Returns:

    • (self)
  • #public(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #public(string, ...) ⇒ self

    Returns:

    • (self)


1713
1714
1715
1716
1717
# File 'vm_method.c', line 1713

static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PUBLIC);
}

#public_class_method(symbol, ...) ⇒ Object #public_class_method(string, ...) ⇒ Object

Makes a list of existing class methods public.

String arguments are converted to symbols.



1893
1894
1895
1896
1897
1898
# File 'vm_method.c', line 1893

static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC);
    return obj;
}

#public_constant(symbol, ...) ⇒ Object

Makes a list of existing constants public.



2984
2985
2986
2987
2988
2989
# File 'variable.c', line 2984

VALUE
rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
    return obj;
}

#public_instance_method(symbol) ⇒ Object

Similar to instance_method, searches public method only.



1977
1978
1979
1980
1981
1982
1983
1984
1985
# File 'proc.c', line 1977

static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
	rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}

#public_instance_methods(include_super = true) ⇒ Array

Returns a list of the public instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

Returns:



1324
1325
1326
1327
1328
# File 'class.c', line 1324

VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}

#public_method_defined?(symbol, inherit = true) ⇒ Boolean #public_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named public method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                 #=> true
C.public_method_defined? "method1"         #=> true
C.public_method_defined? "method1", true   #=> true
C.public_method_defined? "method1", false  #=> true
C.public_method_defined? "method2"         #=> false
C.method_defined? "method2"                #=> true

Overloads:

  • #public_method_defined?(symbol, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #public_method_defined?(string, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


1397
1398
1399
1400
1401
# File 'vm_method.c', line 1397

static VALUE
rb_mod_public_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PUBLIC);
}

#refine(mod) { ... } ⇒ Object (private)

Refine mod in the receiver.

Returns a module, where refined methods are defined.

Yields:



1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
# File 'eval.c', line 1527

static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
    VALUE refinement;
    ID id_refinements, id_activated_refinements,
       id_refined_class, id_defined_at;
    VALUE refinements, activated_refinements;
    rb_thread_t *th = GET_THREAD();
    VALUE block_handler = rb_vm_frame_block_handler(th->ec->cfp);

    if (block_handler == VM_BLOCK_HANDLER_NONE) {
	rb_raise(rb_eArgError, "no block given");
    }
    if (vm_block_handler_type(block_handler) != block_handler_type_iseq) {
	rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine");
    }

    ensure_class_or_module(klass);
    if (RB_TYPE_P(klass, T_MODULE)) {
        FL_SET(klass, RCLASS_REFINED_BY_ANY);
    }
    CONST_ID(id_refinements, "__refinements__");
    refinements = rb_attr_get(module, id_refinements);
    if (NIL_P(refinements)) {
	refinements = hidden_identity_hash_new();
	rb_ivar_set(module, id_refinements, refinements);
    }
    CONST_ID(id_activated_refinements, "__activated_refinements__");
    activated_refinements = rb_attr_get(module, id_activated_refinements);
    if (NIL_P(activated_refinements)) {
	activated_refinements = hidden_identity_hash_new();
	rb_ivar_set(module, id_activated_refinements,
		    activated_refinements);
    }
    refinement = rb_hash_lookup(refinements, klass);
    if (NIL_P(refinement)) {
	VALUE superclass = refinement_superclass(klass);
	refinement = rb_module_new();
	RCLASS_SET_SUPER(refinement, superclass);
	FL_SET(refinement, RMODULE_IS_REFINEMENT);
	CONST_ID(id_refined_class, "__refined_class__");
	rb_ivar_set(refinement, id_refined_class, klass);
	CONST_ID(id_defined_at, "__defined_at__");
	rb_ivar_set(refinement, id_defined_at, module);
	rb_hash_aset(refinements, klass, refinement);
	add_activated_refinement(activated_refinements, klass, refinement);
    }
    rb_yield_refine_block(refinement, activated_refinements);
    return refinement;
}

#remove_class_variable(sym) ⇒ Object

Removes the definition of the sym, returning that constant’s value.

class Dummy
  @@var = 99
  puts @@var
  remove_class_variable(:@@var)
  p(defined? @@var)
end

produces:

99
nil

Returns:



3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
# File 'variable.c', line 3272

VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
    const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
    st_data_t val, n = id;

    if (!id) {
      not_defined:
	rb_name_err_raise("class variable %1$s not defined for %2$s",
			  mod, name);
    }
    rb_check_frozen(mod);
    if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
	return (VALUE)val;
    }
    if (rb_cvar_defined(mod, id)) {
	rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
    }
    goto not_defined;
}

#remove_const(sym) ⇒ Object (private)

Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.

Returns:



2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
# File 'variable.c', line 2478

VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
    const ID id = id_for_var(mod, name, a, constant);

    if (!id) {
        undefined_constant(mod, name);
    }
    return rb_const_remove(mod, id);
}

#remove_method(symbol) ⇒ self #remove_method(string) ⇒ self

Removes the method identified by symbol from the current class. For an example, see Module#undef_method. String arguments are converted to symbols.

Overloads:

  • #remove_method(symbol) ⇒ self

    Returns:

    • (self)
  • #remove_method(string) ⇒ self

    Returns:

    • (self)


1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
# File 'vm_method.c', line 1047

static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
    int i;

    for (i = 0; i < argc; i++) {
	VALUE v = argv[i];
	ID id = rb_check_id(&v);
	if (!id) {
	    rb_name_err_raise("method `%1$s' not defined in %2$s",
			      mod, v);
	}
	remove_method(mod, id);
    }
    return mod;
}

#ruby2_keywords(method_name, ...) ⇒ self (private)

For the given method names, marks the method as passing keywords through a normal argument splat. This should only be called on methods that accept an argument splat (*args) but not explicit keywords or a keyword splat. It marks the method such that if the method is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the method to other methods.

This should only be used for methods that delegate keywords to another method, and only for backwards compatibility with Ruby versions before 2.7.

This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in Ruby versions before 2.7, check that the module responds to this method before calling it. Also, be aware that if this method is removed, the behavior of the method will change so that it does not pass through keywords.

module Mod
  def foo(meth, *args, &block)
    send(:"do_#{meth}", *args, &block)
  end
  ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)
end

Returns:

  • (self)


1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
# File 'vm_method.c', line 1808

static VALUE
rb_mod_ruby2_keywords(int argc, VALUE *argv, VALUE module)
{
    int i;
    VALUE origin_class = RCLASS_ORIGIN(module);

    rb_check_frozen(module);

    for (i = 0; i < argc; i++) {
        VALUE v = argv[i];
        ID name = rb_check_id(&v);
        rb_method_entry_t *me;
        VALUE defined_class;

        if (!name) {
            rb_print_undef_str(module, v);
        }

        me = search_method(origin_class, name, &defined_class);
        if (!me && RB_TYPE_P(module, T_MODULE)) {
            me = search_method(rb_cObject, name, &defined_class);
        }

        if (UNDEFINED_METHOD_ENTRY_P(me) ||
            UNDEFINED_REFINED_METHOD_P(me->def)) {
            rb_print_undef(module, name, METHOD_VISI_UNDEF);
        }

        if (module == defined_class || origin_class == defined_class) {
            switch (me->def->type) {
              case VM_METHOD_TYPE_ISEQ:
                if (me->def->body.iseq.iseqptr->body->param.flags.has_rest &&
                        !me->def->body.iseq.iseqptr->body->param.flags.has_kw &&
                        !me->def->body.iseq.iseqptr->body->param.flags.has_kwrest) {
                    me->def->body.iseq.iseqptr->body->param.flags.ruby2_keywords = 1;
                    rb_clear_method_cache_by_class(module);
                }
                else {
                    rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
                }
                break;
              case VM_METHOD_TYPE_BMETHOD: {
                VALUE procval = me->def->body.bmethod.proc;
                if (vm_block_handler_type(procval) == block_handler_type_proc) {
                    procval = vm_proc_to_block_handler(VM_BH_TO_PROC(procval));
                }

                if (vm_block_handler_type(procval) == block_handler_type_iseq) {
                    const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(procval);
                    const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
                    if (iseq->body->param.flags.has_rest &&
                            !iseq->body->param.flags.has_kw &&
                            !iseq->body->param.flags.has_kwrest) {
                        iseq->body->param.flags.ruby2_keywords = 1;
                        rb_clear_method_cache_by_class(module);
                    }
                    else {
                        rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
                    }
                    return Qnil;
                }
              }
              /* fallthrough */
              default:
                rb_warn("Skipping set of ruby2_keywords flag for %s (method not defined in Ruby)", rb_id2name(name));
                break;
            }
        }
        else {
            rb_warn("Skipping set of ruby2_keywords flag for %s (can only set in method defining module)", rb_id2name(name));
        }
    }
    return Qnil;
}

#singleton_class?Boolean

Returns true if mod is a singleton class or false if it is an ordinary class or module.

class C
end
C.singleton_class?                  #=> false
C.singleton_class.singleton_class?  #=> true

Returns:

  • (Boolean)


3049
3050
3051
3052
3053
3054
3055
# File 'object.c', line 3049

static VALUE
rb_mod_singleton_p(VALUE klass)
{
    if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
	return Qtrue;
    return Qfalse;
}

#to_sString Also known as: inspect

Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.

Returns:



1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
# File 'object.c', line 1713

static VALUE
rb_mod_to_s(VALUE klass)
{
    ID id_defined_at;
    VALUE refined_class, defined_at;

    if (FL_TEST(klass, FL_SINGLETON)) {
	VALUE s = rb_usascii_str_new2("#<Class:");
	VALUE v = rb_ivar_get(klass, id__attached__);

	if (CLASS_OR_MODULE_P(v)) {
	    rb_str_append(s, rb_inspect(v));
	}
	else {
	    rb_str_append(s, rb_any_to_s(v));
	}
	rb_str_cat2(s, ">");

	return s;
    }
    refined_class = rb_refinement_module_get_refined_class(klass);
    if (!NIL_P(refined_class)) {
	VALUE s = rb_usascii_str_new2("#<refinement:");

	rb_str_concat(s, rb_inspect(refined_class));
	rb_str_cat2(s, "@");
	CONST_ID(id_defined_at, "__defined_at__");
	defined_at = rb_attr_get(klass, id_defined_at);
	rb_str_concat(s, rb_inspect(defined_at));
	rb_str_cat2(s, ">");
	return s;
    }
    return rb_class_name(klass);
}

#undef_method(symbol) ⇒ self #undef_method(string) ⇒ self

Prevents the current class from responding to calls to the named method. Contrast this with remove_method, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver. String arguments are converted to symbols.

class Parent
  def hello
    puts "In parent"
  end
end
class Child < Parent
  def hello
    puts "In child"
  end
end

c = Child.new
c.hello

class Child
  remove_method :hello  # remove from child, still in parent
end
c.hello

class Child
  undef_method :hello   # prevent any calls to 'hello'
end
c.hello

produces:

In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)

Overloads:

  • #undef_method(symbol) ⇒ self

    Returns:

    • (self)
  • #undef_method(string) ⇒ self

    Returns:

    • (self)


1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
# File 'vm_method.c', line 1272

static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
    int i;
    for (i = 0; i < argc; i++) {
	VALUE v = argv[i];
	ID id = rb_check_id(&v);
	if (!id) {
	    rb_method_name_error(mod, v);
	}
	rb_undef(mod, id);
    }
    return mod;
}

#usingself (private)

Import class refinements from module into the current class or module definition.

Returns:

  • (self)


1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
# File 'eval.c', line 1597

static VALUE
mod_using(VALUE self, VALUE module)
{
    rb_control_frame_t *prev_cfp = previous_frame(GET_EC());

    if (prev_frame_func()) {
	rb_raise(rb_eRuntimeError,
		 "Module#using is not permitted in methods");
    }
    if (prev_cfp && prev_cfp->self != self) {
	rb_raise(rb_eRuntimeError, "Module#using is not called on self");
    }
    if (rb_block_given_p()) {
	ignored_block(module, "Module#");
    }
    rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
    return self;
}