Class: Float
Overview
******************************************************************
Float objects represent inexact real numbers using the native
architecture's double-precision floating point representation.
Floating point has a different arithmetic and is an inexact number.
So you should know its esoteric system. see following:
- http://docs.sun.com/source/806-3568/ncg_goldberg.html
- http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise
- http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
Constant Summary collapse
- ROUNDS =
-1:: Indeterminable 0:: Rounding towards zero 1:: Rounding to the nearest number 2:: Rounding towards positive infinity 3:: Rounding towards negative infinity
Represents the rounding mode for floating point addition. Usually defaults to 1, rounding to the nearest number. Other modes include
- RADIX =
The base of the floating point, or number of unique digits used to represent the number.
Usually defaults to 2 on most systems, which would represent a base-10 decimal. INT2FIX(FLT_RADIX)
- MANT_DIG =
The number of base digits for the
doubledata type.Usually defaults to 53.
INT2FIX(DBL_MANT_DIG)
- DIG =
The number of decimal digits in a double-precision floating point.
Usually defaults to 15.
INT2FIX(DBL_DIG)
- MIN_EXP =
The smallest posable exponent value in a double-precision floating point.
Usually defaults to -1021.
INT2FIX(DBL_MIN_EXP)
- MAX_EXP =
The largest possible exponent value in a double-precision floating point.
Usually defaults to 1024.
INT2FIX(DBL_MAX_EXP)
- MIN_10_EXP =
The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to -307.
INT2FIX(DBL_MIN_10_EXP)
- MAX_10_EXP =
The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to 308.
INT2FIX(DBL_MAX_10_EXP)
- MIN =
The smallest positive integer in a double-precision floating point.
Usually defaults to 2.2250738585072014e-308.
DBL2NUM(DBL_MIN)
- MAX =
The largest possible integer in a double-precision floating point number.
Usually defaults to 1.7976931348623157e+308.
DBL2NUM(DBL_MAX)
- EPSILON =
The difference between 1 and the smallest double-precision floating point number.
Usually defaults to 2.2204460492503131e-16.
DBL2NUM(DBL_EPSILON)
- INFINITY =
An expression representing positive infinity.
DBL2NUM(INFINITY)
- NAN =
An expression representing a value which is “not a number”.
DBL2NUM(NAN)
Instance Method Summary collapse
-
#%(y) ⇒ Object
Return the modulo after division of
floatbyother. -
#*(other) ⇒ Float
Returns a new float which is the product of
floatandother. -
#**(other) ⇒ Float
Raises
floatto the power ofother. -
#+(other) ⇒ Float
Returns a new float which is the sum of
floatandother. -
#-(other) ⇒ Float
Returns a new float which is the difference of
floatandother. -
#- ⇒ Float
Returns float, negated.
-
#/(other) ⇒ Float
Returns a new float which is the result of dividing
floatbyother. -
#<(real) ⇒ Boolean
Returns
trueiffloatis less thanreal. -
#<=(real) ⇒ Boolean
Returns
trueiffloatis less than or equal toreal. -
#<=>(real) ⇒ -1, ...
Returns -1, 0, +1 or nil depending on whether
floatis less than, equal to, or greater thanreal. -
#==(obj) ⇒ Boolean
Returns
trueonly ifobjhas the same value asfloat. -
#==(obj) ⇒ Boolean
Returns
trueonly ifobjhas the same value asfloat. -
#>(real) ⇒ Boolean
Returns
trueiffloatis greater thanreal. -
#>=(real) ⇒ Boolean
Returns
trueiffloatis greater than or equal toreal. -
#abs ⇒ Object
Returns the absolute value of
float. -
#angle ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#arg ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#ceil ⇒ Integer
Returns the smallest Integer greater than or equal to
float. -
#coerce(numeric) ⇒ Array
Returns an array with both a
numericand afloatrepresented as Float objects. -
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#divmod(numeric) ⇒ Array
See Numeric#divmod.
-
#eql?(obj) ⇒ Boolean
Returns
trueonly ifobjis a Float with the same value asfloat. -
#fdiv(y) ⇒ Object
Returns
float / numeric, same as Float#/. -
#finite? ⇒ Boolean
Returns
trueiffloatis a valid IEEE floating point number (it is not infinite, and Float#nan? isfalse). -
#floor ⇒ Integer
Returns the largest integer less than or equal to
float. -
#hash ⇒ Integer
Returns a hash code for this float.
-
#infinite? ⇒ nil, ...
Return values corresponding to the value of
float:. -
#magnitude ⇒ Object
Returns the absolute value of
float. -
#modulo(y) ⇒ Object
Return the modulo after division of
floatbyother. -
#nan? ⇒ Boolean
Returns
trueiffloatis an invalid IEEE floating point number. -
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#quo(y) ⇒ Object
Returns
float / numeric, same as Float#/. -
#rationalize([eps]) ⇒ Object
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|).
-
#round([ndigits]) ⇒ Integer, Float
Rounds
floatto a given precision in decimal digits (default 0 digits). -
#to_f ⇒ self
Since
floatis already a float, returnsself. -
#to_i ⇒ Object
Returns the
floattruncated to an Integer. -
#to_int ⇒ Object
Returns the
floattruncated to an Integer. -
#to_r ⇒ Object
Returns the value as a rational.
-
#to_s ⇒ String
(also: #inspect)
Returns a string containing a representation of self.
-
#truncate ⇒ Object
Returns the
floattruncated to an Integer. -
#zero? ⇒ Boolean
Returns
trueiffloatis 0.0.
Methods inherited from Numeric
#+@, #abs2, #conj, #conjugate, #div, #i, #imag, #imaginary, #initialize_copy, #integer?, #nonzero?, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c
Methods included from Comparable
Instance Method Details
#%(other) ⇒ Float #modulo(other) ⇒ Float
Return the modulo after division of float by other.
6543.21.modulo(137) #=> 104.21
6543.21.modulo(137.24) #=> 92.9299999999996
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
# File 'numeric.c', line 926 static VALUE flo_mod(VALUE x, VALUE y) { double fy; if (RB_TYPE_P(y, T_FIXNUM)) { fy = (double)FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { fy = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { fy = RFLOAT_VALUE(y); } else { return rb_num_coerce_bin(x, y, '%'); } return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy)); } |
#*(other) ⇒ Float
Returns a new float which is the product of float and other.
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
# File 'numeric.c', line 811 static VALUE flo_mul(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '*'); } } |
#**(other) ⇒ Float
Raises float to the power of other.
2.0**3 #=> 8.0
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
# File 'numeric.c', line 1000 static VALUE flo_pow(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y))); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y))); } else if (RB_TYPE_P(y, T_FLOAT)) { { double dx = RFLOAT_VALUE(x); double dy = RFLOAT_VALUE(y); if (dx < 0 && dy != round(dy)) return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y); return DBL2NUM(pow(dx, dy)); } } else { return rb_num_coerce_bin(x, y, rb_intern("**")); } } |
#+(other) ⇒ Float
Returns a new float which is the sum of float and other.
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
# File 'numeric.c', line 763 static VALUE flo_plus(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '+'); } } |
#-(other) ⇒ Float
Returns a new float which is the difference of float and other.
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 |
# File 'numeric.c', line 787 static VALUE flo_minus(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '-'); } } |
#- ⇒ Float
Returns float, negated.
750 751 752 753 754 |
# File 'numeric.c', line 750 static VALUE flo_uminus(VALUE flt) { return DBL2NUM(-RFLOAT_VALUE(flt)); } |
#/(other) ⇒ Float
Returns a new float which is the result of dividing float by other.
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
# File 'numeric.c', line 835 static VALUE flo_div(VALUE x, VALUE y) { long f_y; double d; if (RB_TYPE_P(y, T_FIXNUM)) { f_y = FIX2LONG(y); return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y); } else if (RB_TYPE_P(y, T_BIGNUM)) { d = rb_big2dbl(y); return DBL2NUM(RFLOAT_VALUE(x) / d); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '/'); } } |
#<(real) ⇒ Boolean
Returns true if float is less than real.
The result of NaN < NaN is undefined, so the implementation-dependent value is returned.
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 |
# File 'numeric.c', line 1262 static VALUE flo_lt(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2INT(rel) < 0 ? Qtrue : Qfalse; return Qfalse; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, '<'); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a < b)?Qtrue:Qfalse; } |
#<=(real) ⇒ Boolean
Returns true if float is less than or equal to real.
The result of NaN <= NaN is undefined, so the implementation-dependent value is returned.
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 |
# File 'numeric.c', line 1299 static VALUE flo_le(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse; return Qfalse; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, rb_intern("<=")); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a <= b)?Qtrue:Qfalse; } |
#<=>(real) ⇒ -1, ...
Returns -1, 0, +1 or nil depending on whether float is less than, equal to, or greater than real. This is the basis for the tests in Comparable.
The result of NaN <=> NaN is undefined, so the implementation-dependent value is returned.
nil is returned if the two values are incomparable.
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
# File 'numeric.c', line 1146 static VALUE flo_cmp(VALUE x, VALUE y) { double a, b; VALUE i; a = RFLOAT_VALUE(x); if (isnan(a)) return Qnil; if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return INT2FIX(-FIX2INT(rel)); return rel; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); } else { if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) { if (RTEST(i)) { int j = rb_cmpint(i, x, y); j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1); return INT2FIX(j); } if (a > 0.0) return INT2FIX(1); return INT2FIX(-1); } return rb_num_coerce_cmp(x, y, id_cmp); } return rb_dbl_cmp(a, b); } |
#==(obj) ⇒ Boolean
Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.
The result of NaN == NaN is undefined, so the implementation-dependent value is returned.
1.0 == 1 #=> true
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 |
# File 'numeric.c', line 1079 static VALUE flo_eq(VALUE x, VALUE y) { volatile double a, b; if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { return rb_integer_float_eq(y, x); } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return num_equal(x, y); } a = RFLOAT_VALUE(x); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; } |
#==(obj) ⇒ Boolean
Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.
The result of NaN == NaN is undefined, so the implementation-dependent value is returned.
1.0 == 1 #=> true
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 |
# File 'numeric.c', line 1079 static VALUE flo_eq(VALUE x, VALUE y) { volatile double a, b; if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { return rb_integer_float_eq(y, x); } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return num_equal(x, y); } a = RFLOAT_VALUE(x); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; } |
#>(real) ⇒ Boolean
Returns true if float is greater than real.
The result of NaN > NaN is undefined, so the implementation-dependent value is returned.
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 |
# File 'numeric.c', line 1188 static VALUE flo_gt(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2INT(rel) > 0 ? Qtrue : Qfalse; return Qfalse; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, '>'); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a > b)?Qtrue:Qfalse; } |
#>=(real) ⇒ Boolean
Returns true if float is greater than or equal to real.
The result of NaN >= NaN is undefined, so the implementation-dependent value is returned.
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 |
# File 'numeric.c', line 1225 static VALUE flo_ge(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse; return Qfalse; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, rb_intern(">=")); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a >= b)?Qtrue:Qfalse; } |
#abs ⇒ Float #magnitude ⇒ Float
Returns the absolute value of float.
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
1379 1380 1381 1382 1383 1384 |
# File 'numeric.c', line 1379 static VALUE flo_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); } |
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2007 2008 2009 2010 2011 2012 2013 2014 2015 |
# File 'complex.c', line 2007 static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); } |
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2007 2008 2009 2010 2011 2012 2013 2014 2015 |
# File 'complex.c', line 2007 static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); } |
#ceil ⇒ Integer
Returns the smallest Integer greater than or equal to float.
1.2.ceil #=> 2
2.0.ceil #=> 2
(-1.2).ceil #=> -1
(-2.0).ceil #=> -2
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 |
# File 'numeric.c', line 1514 static VALUE flo_ceil(VALUE num) { double f = ceil(RFLOAT_VALUE(num)); long val; if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); } |
#coerce(numeric) ⇒ Array
Returns an array with both a numeric and a float represented as Float objects.
This is achieved by converting a numeric to a Float.
1.2.coerce(3) #=> [3.0, 1.2]
2.5.coerce(1.1) #=> [1.1, 2.5]
737 738 739 740 741 |
# File 'numeric.c', line 737 static VALUE flo_coerce(VALUE x, VALUE y) { return rb_assoc_new(rb_Float(y), x); } |
#denominator ⇒ Integer
Returns the denominator (always positive). The result is machine dependent.
See numerator.
1892 1893 1894 1895 1896 1897 1898 1899 |
# File 'rational.c', line 1892 static VALUE float_denominator(VALUE self) { double d = RFLOAT_VALUE(self); if (isinf(d) || isnan(d)) return INT2FIX(1); return rb_call_super(0, 0); } |
#divmod(numeric) ⇒ Array
See Numeric#divmod.
42.0.divmod 6 #=> [7, 0.0]
42.0.divmod 5 #=> [8, 2.0]
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
# File 'numeric.c', line 966 static VALUE flo_divmod(VALUE x, VALUE y) { double fy, div, mod; volatile VALUE a, b; if (RB_TYPE_P(y, T_FIXNUM)) { fy = (double)FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { fy = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { fy = RFLOAT_VALUE(y); } else { return rb_num_coerce_bin(x, y, rb_intern("divmod")); } flodivmod(RFLOAT_VALUE(x), fy, &div, &mod); a = dbl2ival(div); b = DBL2NUM(mod); return rb_assoc_new(a, b); } |
#eql?(obj) ⇒ Boolean
Returns true only if obj is a Float with the same value as float. Contrast this with Float#==, which performs type conversions.
The result of NaN.eql?(NaN) is undefined, so the implementation-dependent value is returned.
1.0.eql?(1) #=> false
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 |
# File 'numeric.c', line 1339 static VALUE flo_eql(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FLOAT)) { double a = RFLOAT_VALUE(x); double b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a) || isnan(b)) return Qfalse; #endif if (a == b) return Qtrue; } return Qfalse; } |
#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Returns float / numeric, same as Float#/.
865 866 867 868 869 |
# File 'numeric.c', line 865 static VALUE flo_quo(VALUE x, VALUE y) { return rb_funcall(x, '/', 1, y); } |
#finite? ⇒ Boolean
Returns true if float is a valid IEEE floating point number (it is not infinite, and Float#nan? is false).
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 |
# File 'numeric.c', line 1461 static VALUE flo_is_finite_p(VALUE num) { double value = RFLOAT_VALUE(num); #if HAVE_ISFINITE if (!isfinite(value)) return Qfalse; #else if (isinf(value) || isnan(value)) return Qfalse; #endif return Qtrue; } |
#floor ⇒ Integer
Returns the largest integer less than or equal to float.
1.2.floor #=> 1
2.0.floor #=> 2
(-1.2).floor #=> -2
(-2.0).floor #=> -2
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 |
# File 'numeric.c', line 1489 static VALUE flo_floor(VALUE num) { double f = floor(RFLOAT_VALUE(num)); long val; if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); } |
#hash ⇒ Integer
Returns a hash code for this float.
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 |
# File 'numeric.c', line 1110 static VALUE flo_hash(VALUE num) { double d; st_index_t hash; d = RFLOAT_VALUE(num); /* normalize -0.0 to 0.0 */ if (d == 0.0) d = 0.0; hash = rb_memhash(&d, sizeof(d)); return LONG2FIX(hash); } |
#infinite? ⇒ nil, ...
Return values corresponding to the value of float:
finite:: nil
-Infinity-
-1 +Infinity-
1
For example:
(0.0).infinite? #=> nil
(-1.0/0.0).infinite? #=> -1
(+1.0/0.0).infinite? #=> 1
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 |
# File 'numeric.c', line 1440 static VALUE flo_is_infinite_p(VALUE num) { double value = RFLOAT_VALUE(num); if (isinf(value)) { return INT2FIX( value < 0 ? -1 : 1 ); } return Qnil; } |
#abs ⇒ Float #magnitude ⇒ Float
Returns the absolute value of float.
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
1379 1380 1381 1382 1383 1384 |
# File 'numeric.c', line 1379 static VALUE flo_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); } |
#%(other) ⇒ Float #modulo(other) ⇒ Float
Return the modulo after division of float by other.
6543.21.modulo(137) #=> 104.21
6543.21.modulo(137.24) #=> 92.9299999999996
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
# File 'numeric.c', line 926 static VALUE flo_mod(VALUE x, VALUE y) { double fy; if (RB_TYPE_P(y, T_FIXNUM)) { fy = (double)FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { fy = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { fy = RFLOAT_VALUE(y); } else { return rb_num_coerce_bin(x, y, '%'); } return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy)); } |
#nan? ⇒ Boolean
Returns true if float is an invalid IEEE floating point number.
a = -1.0 #=> -1.0
a.nan? #=> false
a = 0.0/0.0 #=> NaN
a.nan? #=> true
1415 1416 1417 1418 1419 1420 1421 |
# File 'numeric.c', line 1415 static VALUE flo_is_nan_p(VALUE num) { double value = RFLOAT_VALUE(num); return isnan(value) ? Qtrue : Qfalse; } |
#numerator ⇒ Integer
Returns the numerator. The result is machine dependent.
n = 0.3.numerator #=> 5404319552844595
d = 0.3.denominator #=> 18014398509481984
n.fdiv(d) #=> 0.3
1874 1875 1876 1877 1878 1879 1880 1881 |
# File 'rational.c', line 1874 static VALUE float_numerator(VALUE self) { double d = RFLOAT_VALUE(self); if (isinf(d) || isnan(d)) return self; return rb_call_super(0, 0); } |
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2007 2008 2009 2010 2011 2012 2013 2014 2015 |
# File 'complex.c', line 2007 static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); } |
#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Returns float / numeric, same as Float#/.
865 866 867 868 869 |
# File 'numeric.c', line 865 static VALUE flo_quo(VALUE x, VALUE y) { return rb_funcall(x, '/', 1, y); } |
#rationalize([eps]) ⇒ Object
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if the optional eps is not given, it will be chosen automatically.
0.3.rationalize #=> (3/10)
1.333.rationalize #=> (1333/1000)
1.333.rationalize(0.01) #=> (4/3)
See to_r.
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 |
# File 'rational.c', line 2089 static VALUE float_rationalize(int argc, VALUE *argv, VALUE self) { VALUE e; if (f_negative_p(self)) return f_negate(float_rationalize(argc, argv, f_abs(self))); rb_scan_args(argc, argv, "01", &e); if (argc != 0) { return rb_flt_rationalize_with_prec(self, e); } else { return rb_flt_rationalize(self); } } |
#round([ndigits]) ⇒ Integer, Float
Rounds float to a given precision in decimal digits (default 0 digits).
Precision may be negative. Returns a floating point number when ndigits is more than zero.
1.4.round #=> 1
1.5.round #=> 2
1.6.round #=> 2
(-1.5).round #=> -2
1.234567.round(2) #=> 1.23
1.234567.round(3) #=> 1.235
1.234567.round(4) #=> 1.2346
1.234567.round(5) #=> 1.23457
34567.89.round(-5) #=> 0
34567.89.round(-4) #=> 30000
34567.89.round(-3) #=> 35000
34567.89.round(-2) #=> 34600
34567.89.round(-1) #=> 34570
34567.89.round(0) #=> 34568
34567.89.round(1) #=> 34567.9
34567.89.round(2) #=> 34567.89
34567.89.round(3) #=> 34567.89
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 |
# File 'numeric.c', line 1600 static VALUE flo_round(int argc, VALUE *argv, VALUE num) { VALUE nd; double number, f; int ndigits = 0; int binexp; enum {float_dig = DBL_DIG+2}; if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) { ndigits = NUM2INT(nd); } if (ndigits < 0) { return int_round_0(flo_truncate(num), ndigits); } number = RFLOAT_VALUE(num); if (ndigits == 0) { return dbl2ival(number); } frexp(number, &binexp); /* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}", i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp Recall that up to float_dig digits can be needed to represent a double, so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits) will be an integer and thus the result is the original number. If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so if ndigits + exp < 0, the result is 0. We have: 2 ** (binexp-1) <= |number| < 2 ** binexp 10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10)) If binexp >= 0, and since log_2(10) = 3.322259: 10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3) floor(binexp/4) <= exp <= ceil(binexp/3) If binexp <= 0, swap the /4 and the /3 So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0 */ if (isinf(number) || isnan(number) || (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) { return num; } if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) { return DBL2NUM(0); } f = pow(10, ndigits); return DBL2NUM(round(number * f) / f); } |
#to_f ⇒ self
Since float is already a float, returns self.
1361 1362 1363 1364 1365 |
# File 'numeric.c', line 1361 static VALUE flo_to_f(VALUE num) { return num; } |
#to_i ⇒ Integer #to_int ⇒ Integer #truncate ⇒ Integer
Returns the float truncated to an Integer.
Synonyms are #to_i, #to_int, and #truncate.
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 |
# File 'numeric.c', line 1660 static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val; if (f > 0.0) f = floor(f); if (f < 0.0) f = ceil(f); if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); } |
#to_i ⇒ Integer #to_int ⇒ Integer #truncate ⇒ Integer
Returns the float truncated to an Integer.
Synonyms are #to_i, #to_int, and #truncate.
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 |
# File 'numeric.c', line 1660 static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val; if (f > 0.0) f = floor(f); if (f < 0.0) f = ceil(f); if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); } |
#to_r ⇒ Object
Returns the value as a rational.
NOTE: 0.3.to_r isn’t the same as ‘0.3’.to_r. The latter is equivalent to ‘3/10’.to_r, but the former isn’t so.
2.0.to_r #=> (2/1)
2.5.to_r #=> (5/2)
-0.75.to_r #=> (-3/4)
0.0.to_r #=> (0/1)
See rationalize.
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 |
# File 'rational.c', line 1999 static VALUE float_to_r(VALUE self) { VALUE f, n; float_decode_internal(self, &f, &n); #if FLT_RADIX == 2 { long ln = FIX2LONG(n); if (ln == 0) return f_to_r(f); if (ln > 0) return f_to_r(f_lshift(f, n)); ln = -ln; return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln))); } #else return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n))); #endif } |
#to_s ⇒ String Also known as: inspect
Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
# File 'numeric.c', line 655 static VALUE flo_to_s(VALUE flt) { char *ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve); enum {decimal_mant = DBL_MANT_DIG-DBL_DIG}; enum {float_dig = DBL_DIG+1}; char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10]; double value = RFLOAT_VALUE(flt); VALUE s; char *p, *e; int sign, decpt, digs; if (isinf(value)) return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity"); else if (isnan(value)) return rb_usascii_str_new2("NaN"); p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e); s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0); if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1; memcpy(buf, p, digs); xfree(p); if (decpt > 0) { if (decpt < digs) { memmove(buf + decpt + 1, buf + decpt, digs - decpt); buf[decpt] = '.'; rb_str_cat(s, buf, digs + 1); } else if (decpt <= DBL_DIG) { long len; char *ptr; rb_str_cat(s, buf, digs); rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2); ptr = RSTRING_PTR(s) + len; if (decpt > digs) { memset(ptr, '0', decpt - digs); ptr += decpt - digs; } memcpy(ptr, ".0", 2); } else { goto exp; } } else if (decpt > -4) { long len; char *ptr; rb_str_cat(s, "0.", 2); rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs); ptr = RSTRING_PTR(s); memset(ptr += len, '0', -decpt); memcpy(ptr -= decpt, buf, digs); } else { exp: if (digs > 1) { memmove(buf + 2, buf + 1, digs - 1); } else { buf[2] = '0'; digs++; } buf[1] = '.'; rb_str_cat(s, buf, digs + 1); rb_str_catf(s, "e%+03d", decpt - 1); } return s; } |
#to_i ⇒ Integer #to_int ⇒ Integer #truncate ⇒ Integer
Returns the float truncated to an Integer.
Synonyms are #to_i, #to_int, and #truncate.
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 |
# File 'numeric.c', line 1660 static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val; if (f > 0.0) f = floor(f); if (f < 0.0) f = ceil(f); if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); } |
#zero? ⇒ Boolean
Returns true if float is 0.0.
1394 1395 1396 1397 1398 1399 1400 1401 |
# File 'numeric.c', line 1394 static VALUE flo_zero_p(VALUE num) { if (RFLOAT_VALUE(num) == 0.0) { return Qtrue; } return Qfalse; } |