Class: Rational

Inherits:
Numeric show all
Defined in:
rational.c

Overview

A rational number can be represented as a paired integer number; a/b (b>0). Where a is numerator and b is denominator. Integer a equals rational a/1 mathematically.

In ruby, you can create rational object with Rational, to_r or rationalize method. The return values will be irreducible.

Rational(1)      #=> (1/1)
Rational(2, 3)   #=> (2/3)
Rational(4, -6)  #=> (-2/3)
3.to_r           #=> (3/1)

You can also create rational object from floating-point numbers or strings.

Rational(0.3)    #=> (5404319552844595/18014398509481984)
Rational('0.3')  #=> (3/10)
Rational('2/3')  #=> (2/3)

0.3.to_r         #=> (5404319552844595/18014398509481984)
'0.3'.to_r       #=> (3/10)
'2/3'.to_r       #=> (2/3)
0.3.rationalize  #=> (3/10)

A rational object is an exact number, which helps you to write program without any rounding errors.

10.times.inject(0){|t,| t + 0.1}              #=> 0.9999999999999999
10.times.inject(0){|t,| t + Rational('0.1')}  #=> (1/1)

However, when an expression has inexact factor (numerical value or operation), will produce an inexact result.

Rational(10) / 3   #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335

Rational(-8) ** Rational(1, 3)
                   #=> (1.0000000000000002+1.7320508075688772i)

Defined Under Namespace

Classes: compatible

Instance Method Summary collapse

Methods inherited from Numeric

#%, #[email protected], #[email protected], #abs, #abs2, #angle, #arg, #conj, #conjugate, #div, #divmod, #eql?, #i, #imag, #imaginary, #initialize_copy, #integer?, #magnitude, #modulo, #nonzero?, #phase, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #to_int, #zero?

Methods included from Comparable

#<, #<=, #>, #>=, #between?

Instance Method Details

#*(numeric) ⇒ Numeric

Performs multiplication.

Rational(2, 3)  * Rational(2, 3)   #=> (4/9)
Rational(900)   * Rational(1)      #=> (900/1)
Rational(-2, 9) * Rational(-9, 2)  #=> (1/1)
Rational(9, 8)  * 4                #=> (9/2)
Rational(20, 9) * 9.8              #=> 21.77777777777778

Returns:


834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
# File 'rational.c', line 834

static VALUE
nurat_mul(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '*');
	}
      case T_FLOAT:
	return f_mul(f_to_f(self), other);
      case T_RATIONAL:
	{
	    get_dat2(self, other);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '*');
	}
      default:
	return rb_num_coerce_bin(self, other, '*');
    }
}

#**(numeric) ⇒ Numeric

Performs exponentiation.

Rational(2)    ** Rational(3)    #=> (8/1)
Rational(10)   ** -2             #=> (1/100)
Rational(10)   ** -2.0           #=> 0.01
Rational(-4)   ** Rational(1,2)  #=> (1.2246063538223773e-16+2.0i)
Rational(1, 2) ** 0              #=> (1/1)
Rational(1, 2) ** 0.0            #=> 1.0

Returns:


962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
# File 'rational.c', line 962

static VALUE
nurat_expt(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && k_exact_zero_p(other))
	return f_rational_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other)) {
	get_dat1(other);

	if (f_one_p(dat->den))
	    other = dat->num; /* c14n */
    }

    /* Deal with special cases of 0**n and 1**n */
    if (k_numeric_p(other) && k_exact_p(other)) {
	get_dat1(self);
	if (f_one_p(dat->den))
	    if (f_one_p(dat->num))
		return f_rational_new_bang1(CLASS_OF(self), ONE);
	    else if (f_minus_one_p(dat->num) && k_integer_p(other))
		return f_rational_new_bang1(CLASS_OF(self), INT2FIX(f_odd_p(other) ? -1 : 1));
	    else if (f_zero_p(dat->num))
		if (FIX2INT(f_cmp(other, ZERO)) == -1)
		    rb_raise_zerodiv();
		else
		    return f_rational_new_bang1(CLASS_OF(self), ZERO);
    }

    /* General case */
    switch (TYPE(other)) {
      case T_FIXNUM:
	{
	    VALUE num, den;

	    get_dat1(self);

	    switch (FIX2INT(f_cmp(other, ZERO))) {
	      case 1:
		num = f_expt(dat->num, other);
		den = f_expt(dat->den, other);
		break;
	      case -1:
		num = f_expt(dat->den, f_negate(other));
		den = f_expt(dat->num, f_negate(other));
		break;
	      default:
		num = ONE;
		den = ONE;
		break;
	    }
	    return f_rational_new2(CLASS_OF(self), num, den);
	}
      case T_BIGNUM:
	rb_warn("in a**b, b may be too big");
	/* fall through */
      case T_FLOAT:
      case T_RATIONAL:
	return f_expt(f_to_f(self), other);
      default:
	return rb_num_coerce_bin(self, other, id_expt);
    }
}

#+(numeric) ⇒ Numeric

Performs addition.

Rational(2, 3)  + Rational(2, 3)   #=> (4/3)
Rational(900)   + Rational(1)      #=> (900/1)
Rational(-2, 9) + Rational(-9, 2)  #=> (-85/18)
Rational(9, 8)  + 4                #=> (41/8)
Rational(20, 9) + 9.8              #=> 12.022222222222222

Returns:


715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
# File 'rational.c', line 715

static VALUE
nurat_add(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	{
	    get_dat1(self);

	    return f_addsub(self,
			    dat->num, dat->den,
			    other, ONE, '+');
	}
      case T_FLOAT:
	return f_add(f_to_f(self), other);
      case T_RATIONAL:
	{
	    get_dat2(self, other);

	    return f_addsub(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '+');
	}
      default:
	return rb_num_coerce_bin(self, other, '+');
    }
}

#-(numeric) ⇒ Numeric

Performs subtraction.

Rational(2, 3)  - Rational(2, 3)   #=> (0/1)
Rational(900)   - Rational(1)      #=> (899/1)
Rational(-2, 9) - Rational(-9, 2)  #=> (77/18)
Rational(9, 8)  - 4                #=> (23/8)
Rational(20, 9) - 9.8              #=> -7.577777777777778

Returns:


755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
# File 'rational.c', line 755

static VALUE
nurat_sub(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	{
	    get_dat1(self);

	    return f_addsub(self,
			    dat->num, dat->den,
			    other, ONE, '-');
	}
      case T_FLOAT:
	return f_sub(f_to_f(self), other);
      case T_RATIONAL:
	{
	    get_dat2(self, other);

	    return f_addsub(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '-');
	}
      default:
	return rb_num_coerce_bin(self, other, '-');
    }
}

#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric

Performs division.

Rational(2, 3)  / Rational(2, 3)   #=> (1/1)
Rational(900)   / Rational(1)      #=> (900/1)
Rational(-2, 9) / Rational(-9, 2)  #=> (4/81)
Rational(9, 8)  / 4                #=> (9/32)
Rational(20, 9) / 9.8              #=> 0.22675736961451246

Overloads:


875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
# File 'rational.c', line 875

static VALUE
nurat_div(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	if (f_zero_p(other))
	    rb_raise_zerodiv();
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '/');
	}
      case T_FLOAT:
	{
	    double x = RFLOAT_VALUE(other), den;
	    get_dat1(self);

	    if (isnan(x)) return DBL2NUM(NAN);
	    if (isinf(x)) return INT2FIX(0);
	    if (x != 0.0 && modf(x, &den) == 0.0) {
		return rb_rational_raw2(dat->num, f_mul(rb_dbl2big(den), dat->den));
	    }
	}
	return rb_funcall(f_to_f(self), '/', 1, other);
      case T_RATIONAL:
	if (f_zero_p(other))
	    rb_raise_zerodiv();
	{
	    get_dat2(self, other);

	    if (f_one_p(self))
		return f_rational_new_no_reduce2(CLASS_OF(self),
						 bdat->den, bdat->num);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '/');
	}
      default:
	return rb_num_coerce_bin(self, other, '/');
    }
}

#//Object

:nodoc:


1150
1151
1152
1153
1154
# File 'rational.c', line 1150

static VALUE
nurat_idiv(VALUE self, VALUE other)
{
    return f_idiv(self, other);
}

#<=>(numeric) ⇒ -1, ...

Performs comparison and returns -1, 0, or +1.

Rational(2, 3)  <=> Rational(2, 3)  #=> 0
Rational(5)     <=> 5               #=> 0
Rational(2,3)   <=> Rational(1,3)   #=> 1
Rational(1,3)   <=> 1               #=> -1
Rational(1,3)   <=> 0.3             #=> 1

Returns:

  • (-1, 0, +1, nil)

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
# File 'rational.c', line 1037

static VALUE
nurat_cmp(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	{
	    get_dat1(self);

	    if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1)
		return f_cmp(dat->num, other); /* c14n */
	    return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
	}
      case T_FLOAT:
	return f_cmp(f_to_f(self), other);
      case T_RATIONAL:
	{
	    VALUE num1, num2;

	    get_dat2(self, other);

	    if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
		FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
		num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
		num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
	    }
	    else {
		num1 = f_mul(adat->num, bdat->den);
		num2 = f_mul(bdat->num, adat->den);
	    }
	    return f_cmp(f_sub(num1, num2), ZERO);
	}
      default:
	return rb_num_coerce_cmp(self, other, id_cmp);
    }
}

#==(object) ⇒ Boolean

Returns true if rat equals object numerically.

Rational(2, 3)  == Rational(2, 3)   #=> true
Rational(5)     == 5                #=> true
Rational(0)     == 0.0              #=> true
Rational('1/3') == 0.33             #=> false
Rational('1/2') == '1/2'            #=> false

Returns:

  • (Boolean)

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
# File 'rational.c', line 1086

static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	{
	    get_dat1(self);

	    if (f_zero_p(dat->num) && f_zero_p(other))
		return Qtrue;

	    if (!FIXNUM_P(dat->den))
		return Qfalse;
	    if (FIX2LONG(dat->den) != 1)
		return Qfalse;
	    if (f_eqeq_p(dat->num, other))
		return Qtrue;
	    return Qfalse;
	}
      case T_FLOAT:
	return f_eqeq_p(f_to_f(self), other);
      case T_RATIONAL:
	{
	    get_dat2(self, other);

	    if (f_zero_p(adat->num) && f_zero_p(bdat->num))
		return Qtrue;

	    return f_boolcast(f_eqeq_p(adat->num, bdat->num) &&
			      f_eqeq_p(adat->den, bdat->den));
	}
      default:
	return f_eqeq_p(other, self);
    }
}

#ceilInteger #ceil(precision = 0) ⇒ Object

Returns the truncated value (toward positive infinity).

Rational(3).ceil      #=> 3
Rational(2, 3).ceil   #=> 1
Rational(-3, 2).ceil  #=> -1

       decimal      -  1  2  3 . 4  5  6
                      ^  ^  ^  ^   ^  ^
      precision      -3 -2 -1  0  +1 +2

'%f' % Rational('-123.456').ceil(+1)  #=> "-123.400000"
'%f' % Rational('-123.456').ceil(-1)  #=> "-120.000000"

Overloads:


1317
1318
1319
1320
1321
# File 'rational.c', line 1317

static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_ceil);
}

#coerceObject

:nodoc:


1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
# File 'rational.c', line 1124

static VALUE
nurat_coerce(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
      case T_FLOAT:
	return rb_assoc_new(other, f_to_f(self));
      case T_RATIONAL:
	return rb_assoc_new(other, self);
      case T_COMPLEX:
	if (k_exact_zero_p(RCOMPLEX(other)->imag))
	    return rb_assoc_new(f_rational_new_bang1
				(CLASS_OF(self), RCOMPLEX(other)->real), self);
	else
	    return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
    }

    rb_raise(rb_eTypeError, "%s can't be coerced into %s",
	     rb_obj_classname(other), rb_obj_classname(self));
    return Qnil;
}

#denominatorInteger

Returns the denominator (always positive).

Rational(7).denominator             #=> 1
Rational(7, 1).denominator          #=> 1
Rational(9, -4).denominator         #=> 4
Rational(-2, -10).denominator       #=> 5
rat.numerator.gcd(rat.denominator)  #=> 1

Returns:


611
612
613
614
615
616
# File 'rational.c', line 611

static VALUE
nurat_denominator(VALUE self)
{
    get_dat1(self);
    return dat->den;
}

#exact?Boolean

:nodoc:

Returns:

  • (Boolean)

1174
1175
1176
1177
1178
# File 'rational.c', line 1174

static VALUE
nurat_true(VALUE self)
{
    return Qtrue;
}

#fdiv(numeric) ⇒ Float

Performs division and returns the value as a float.

Rational(2, 3).fdiv(1)       #=> 0.6666666666666666
Rational(2, 3).fdiv(0.5)     #=> 1.3333333333333333
Rational(2).fdiv(3)          #=> 0.6666666666666666

Returns:


931
932
933
934
935
936
937
# File 'rational.c', line 931

static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
    if (f_zero_p(other))
	return f_div(self, f_to_f(other));
    return f_to_f(f_div(self, other));
}

#floorInteger #floor(precision = 0) ⇒ Object

Returns the truncated value (toward negative infinity).

Rational(3).floor      #=> 3
Rational(2, 3).floor   #=> 0
Rational(-3, 2).floor  #=> -1

       decimal      -  1  2  3 . 4  5  6
                      ^  ^  ^  ^   ^  ^
      precision      -3 -2 -1  0  +1 +2

'%f' % Rational('-123.456').floor(+1)  #=> "-123.500000"
'%f' % Rational('-123.456').floor(-1)  #=> "-130.000000"

Overloads:


1293
1294
1295
1296
1297
# File 'rational.c', line 1293

static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_floor);
}

#hashObject

:nodoc:


1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
# File 'rational.c', line 1539

static VALUE
nurat_hash(VALUE self)
{
    st_index_t v, h[2];
    VALUE n;

    get_dat1(self);
    n = rb_hash(dat->num);
    h[0] = NUM2LONG(n);
    n = rb_hash(dat->den);
    h[1] = NUM2LONG(n);
    v = rb_memhash(h, sizeof(h));
    return LONG2FIX(v);
}

#inspectString

Returns the value as a string for inspection.

Rational(2).inspect      #=> "(2/1)"
Rational(-8, 6).inspect  #=> "(-4/3)"
Rational('1/2').inspect  #=> "(1/2)"

Returns:


1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
# File 'rational.c', line 1593

static VALUE
nurat_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, f_format(self, f_inspect));
    rb_str_cat2(s, ")");

    return s;
}

#marshal_dumpObject (private)

:nodoc:


1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
# File 'rational.c', line 1625

static VALUE
nurat_marshal_dump(VALUE self)
{
    VALUE a;
    get_dat1(self);

    a = rb_assoc_new(dat->num, dat->den);
    rb_copy_generic_ivar(a, self);
    return a;
}

#numeratorInteger

Returns the numerator.

Rational(7).numerator        #=> 7
Rational(7, 1).numerator     #=> 7
Rational(9, -4).numerator    #=> -9
Rational(-2, -10).numerator  #=> 1

Returns:


592
593
594
595
596
597
# File 'rational.c', line 592

static VALUE
nurat_numerator(VALUE self)
{
    get_dat1(self);
    return dat->num;
}

#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric

Performs division.

Rational(2, 3)  / Rational(2, 3)   #=> (1/1)
Rational(900)   / Rational(1)      #=> (900/1)
Rational(-2, 9) / Rational(-9, 2)  #=> (4/81)
Rational(9, 8)  / 4                #=> (9/32)
Rational(20, 9) / 9.8              #=> 0.22675736961451246

Overloads:


875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
# File 'rational.c', line 875

static VALUE
nurat_div(VALUE self, VALUE other)
{
    switch (TYPE(other)) {
      case T_FIXNUM:
      case T_BIGNUM:
	if (f_zero_p(other))
	    rb_raise_zerodiv();
	{
	    get_dat1(self);

	    return f_muldiv(self,
			    dat->num, dat->den,
			    other, ONE, '/');
	}
      case T_FLOAT:
	{
	    double x = RFLOAT_VALUE(other), den;
	    get_dat1(self);

	    if (isnan(x)) return DBL2NUM(NAN);
	    if (isinf(x)) return INT2FIX(0);
	    if (x != 0.0 && modf(x, &den) == 0.0) {
		return rb_rational_raw2(dat->num, f_mul(rb_dbl2big(den), dat->den));
	    }
	}
	return rb_funcall(f_to_f(self), '/', 1, other);
      case T_RATIONAL:
	if (f_zero_p(other))
	    rb_raise_zerodiv();
	{
	    get_dat2(self, other);

	    if (f_one_p(self))
		return f_rational_new_no_reduce2(CLASS_OF(self),
						 bdat->den, bdat->num);

	    return f_muldiv(self,
			    adat->num, adat->den,
			    bdat->num, bdat->den, '/');
	}
      default:
	return rb_num_coerce_bin(self, other, '/');
    }
}

#quotObject

:nodoc:


1157
1158
1159
1160
1161
# File 'rational.c', line 1157

static VALUE
nurat_quot(VALUE self, VALUE other)
{
    return f_truncate(f_div(self, other));
}

#quotremObject

:nodoc:


1164
1165
1166
1167
1168
1169
# File 'rational.c', line 1164

static VALUE
nurat_quotrem(VALUE self, VALUE other)
{
    VALUE val = f_truncate(f_div(self, other));
    return rb_assoc_new(val, f_sub(self, f_mul(other, val)));
}

#rational?Boolean

:nodoc:

Returns:

  • (Boolean)

1174
1175
1176
1177
1178
# File 'rational.c', line 1174

static VALUE
nurat_true(VALUE self)
{
    return Qtrue;
}

#rationalizeself #rationalize(eps) ⇒ Object

Returns a simpler approximation of the value if the optional argument eps is given (rat-|eps| <= result <= rat+|eps|), self otherwise.

r = Rational(5033165, 16777216)
r.rationalize                    #=> (5033165/16777216)
r.rationalize(Rational('0.01'))  #=> (3/10)
r.rationalize(Rational('0.1'))   #=> (1/3)

Overloads:

  • #rationalizeself

    Returns:

    • (self)

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
# File 'rational.c', line 1515

static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
    VALUE e, a, b, p, q;

    if (argc == 0)
	return self;

    if (f_negative_p(self))
	return f_negate(nurat_rationalize(argc, argv, f_abs(self)));

    rb_scan_args(argc, argv, "01", &e);
    e = f_abs(e);
    a = f_sub(self, e);
    b = f_add(self, e);

    if (f_eqeq_p(a, b))
	return self;

    nurat_rationalize_internal(a, b, &p, &q);
    return f_rational_new2(CLASS_OF(self), p, q);
}

#roundInteger #round(precision = 0) ⇒ Object

Returns the truncated value (toward the nearest integer; 0.5 => 1; -0.5 => -1).

Rational(3).round      #=> 3
Rational(2, 3).round   #=> 1
Rational(-3, 2).round  #=> -2

       decimal      -  1  2  3 . 4  5  6
                      ^  ^  ^  ^   ^  ^
      precision      -3 -2 -1  0  +1 +2

'%f' % Rational('-123.456').round(+1)  #=> "-123.500000"
'%f' % Rational('-123.456').round(-1)  #=> "-120.000000"

Overloads:


1366
1367
1368
1369
1370
# File 'rational.c', line 1366

static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_round);
}

#to_fFloat

Return the value as a float.

Rational(2).to_f      #=> 2.0
Rational(9, 4).to_f   #=> 2.25
Rational(-3, 4).to_f  #=> -0.75
Rational(20, 3).to_f  #=> 6.666666666666667

Returns:


1383
1384
1385
1386
1387
1388
# File 'rational.c', line 1383

static VALUE
nurat_to_f(VALUE self)
{
    get_dat1(self);
    return f_fdiv(dat->num, dat->den);
}

#to_iInteger

Returns the truncated value as an integer.

Equivalent to

rat.truncate.

Rational(2, 3).to_i   #=> 0
Rational(3).to_i      #=> 3
Rational(300.6).to_i  #=> 300
Rational(98,71).to_i  #=> 1
Rational(-30,2).to_i  #=> -15

Returns:


1210
1211
1212
1213
1214
1215
1216
1217
# File 'rational.c', line 1210

static VALUE
nurat_truncate(VALUE self)
{
    get_dat1(self);
    if (f_negative_p(dat->num))
	return f_negate(f_idiv(f_negate(dat->num), dat->den));
    return f_idiv(dat->num, dat->den);
}

#to_rself

Returns self.

Rational(2).to_r      #=> (2/1)
Rational(-8, 6).to_r  #=> (-4/3)

Returns:

  • (self)

1399
1400
1401
1402
1403
# File 'rational.c', line 1399

static VALUE
nurat_to_r(VALUE self)
{
    return self;
}

#to_sString

Returns the value as a string.

Rational(2).to_s      #=> "2/1"
Rational(-8, 6).to_s  #=> "-4/3"
Rational('1/2').to_s  #=> "1/2"

Returns:


1577
1578
1579
1580
1581
# File 'rational.c', line 1577

static VALUE
nurat_to_s(VALUE self)
{
    return f_format(self, f_to_s);
}

#truncateInteger #truncate(precision = 0) ⇒ Object

Returns the truncated value (toward zero).

Rational(3).truncate      #=> 3
Rational(2, 3).truncate   #=> 0
Rational(-3, 2).truncate  #=> -1

       decimal      -  1  2  3 . 4  5  6
                      ^  ^  ^  ^   ^  ^
      precision      -3 -2 -1  0  +1 +2

'%f' % Rational('-123.456').truncate(+1)  #=>  "-123.400000"
'%f' % Rational('-123.456').truncate(-1)  #=>  "-120.000000"

Overloads:


1341
1342
1343
1344
1345
# File 'rational.c', line 1341

static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
    return f_round_common(argc, argv, self, nurat_truncate);
}