Class: Array

Inherits:
Object show all
Includes:
Enumerable
Defined in:
array.c

Overview

Arrays are ordered, integer-indexed collections of any object.

Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array---that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.

Creating Arrays

A new array can be created by using the literal constructor []. Arrays can contain different types of objects. For example, the array below contains an Integer, a String and a Float:

ary = [1, "two", 3.0] #=> [1, "two", 3.0]

An array can also be created by explicitly calling Array.new with zero, one (the initial size of the Array) or two arguments (the initial size and a default object).

ary = Array.new    #=> []
Array.new(3)       #=> [nil, nil, nil]
Array.new(3, true) #=> [0, 0, 0]

Note that the second argument populates the array with references to the same object. Therefore, it is only recommended in cases when you need to instantiate arrays with natively immutable objects such as Symbols, numbers, true or false.

To create an array with separate objects a block can be passed instead. This method is safe to use with mutable objects such as hashes, strings or other arrays:

Array.new(4) { Hash.new } #=> [{}, {}, {}, {}]

This is also a quick way to build up multi-dimensional arrays:

empty_table = Array.new(3) { Array.new(3) }
#=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]

An array can also be created by using the Array() method, provided by Kernel, which calls #to_ary or #to_a on it's argument.

Array(=> "a", :b => "b") #=> [[:a, "a"], [:b, "b"]]

Example Usage

In addition to the methods it mixes in through the Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.

Some of the more common ones are illustrated below.

Accessing Elements

Elements in an array can be retrieved using the Array#[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range.

arr = [1, 2, 3, 4, 5, 6]
arr[2]    #=> 3
arr[100]  #=> nil
arr[-3]   #=> 4
arr[2, 3] #=> [3, 4, 5]
arr[1..4] #=> [2, 3, 4, 5]

Another way to access a particular array element is by using the #at method

arr.at(0) #=> 1

The #slice method works in an identical manner to Array#[].

To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use #fetch.

arr = ['a', 'b', 'c', 'd', 'e', 'f']
arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
arr.fetch(100, "oops") #=> "oops"

The special methods #first and #last will return the first and last elements of an array, respectively.

arr.first #=> 1
arr.last  #=> 6

To return the first n elements of an array, use #take

arr.take(3) #=> [1, 2, 3]

#drop does the opposite of #take, by returning the elements after n elements have been dropped:

arr.drop(3) #=> [4, 5, 6]

Obtaining Information about an Array

Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use #length, #count or #size.

browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
browsers.length #=> 5
browsers.count #=> 5

To check whether an array contains any elements at all

browsers.empty? #=> false

To check whether a particular item is included in the array

browsers.include?('Konqueror') #=> false

Adding Items to Arrays

Items can be added to the end of an array by using either #push or #<<

arr = [1, 2, 3, 4]
arr.push(5) #=> [1, 2, 3, 4, 5]
arr << 6    #=> [1, 2, 3, 4, 5, 6]

#unshift will add a new item to the beginning of an array.

arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]

With #insert you can add a new element to an array at any position.

arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]

Using the #insert method, you can also insert multiple values at once:

arr.insert(3, 'orange', 'pear', 'grapefruit')
#=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]

Removing Items from an Array

The method #pop removes the last element in an array and returns it:

arr =  [1, 2, 3, 4, 5, 6]
arr.pop #=> 6
arr #=> [1, 2, 3, 4, 5]

To retrieve and at the same time remove the first item, use #shift:

arr.shift #=> 1
arr #=> [2, 3, 4, 5]

To delete an element at a particular index:

arr.delete_at(2) #=> 4
arr #=> [2, 3, 5]

To delete a particular element anywhere in an array, use #delete:

arr = [1, 2, 2, 3]
arr.delete(2) #=> [1, 3]

A useful method if you need to remove nil values from an array is #compact:

arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, 'bar', 7, 'baz']

Another common need is to remove duplicate elements from an array.

It has the non-destructive #uniq, and destructive method #uniq!

arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]

Iterating over Arrays

Like all classes that include the Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array's #each, all elements in the Array instance are yielded to the supplied block in sequence.

Note that this operation leaves the array unchanged.

arr = [1, 2, 3, 4, 5]
arr.each { |a| print a -= 10, " " }
# prints: -9 -8 -7 -6 -5
#=> [1, 2, 3, 4, 5]

Another sometimes useful iterator is #reverse_each which will iterate over the elements in the array in reverse order.

words = %w[rats live on no evil star]
str = ""
words.reverse_each { |word| str += "#{word.reverse} " }
str #=> "rats live on no evil star "

The #map method can be used to create a new array based on the original array, but with the values modified by the supplied block:

arr.map { |a| 2*a }   #=> [2, 4, 6, 8, 10]
arr                   #=> [1, 2, 3, 4, 5]
arr.map! { |a| a**2 } #=> [1, 4, 9, 16, 25]
arr                   #=> [1, 4, 9, 16, 25]

Selecting Items from an Array

Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.

Non-destructive Selection

arr = [1, 2, 3, 4, 5, 6]
arr.select { |a| a > 3 }     #=> [4, 5, 6]
arr.reject { |a| a < 3 }     #=> [4, 5, 6]
arr.drop_while { |a| a < 4 } #=> [4, 5, 6]
arr                          #=> [1, 2, 3, 4, 5, 6]

Destructive Selection

#select! and #reject! are the corresponding destructive methods to #select and #reject

Similar to #select vs. #reject, #delete_if and #keep_if have the exact opposite result when supplied with the same block:

arr.delete_if { |a| a < 4 } #=> [4, 5, 6]
arr                         #=> [4, 5, 6]

arr = [1, 2, 3, 4, 5, 6]
arr.keep_if { |a| a < 4 } #=> [1, 2, 3]
arr                       #=> [1, 2, 3]

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Enumerable

#all?, #any?, #chunk, #collect_concat, #detect, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #entries, #find, #find_all, #flat_map, #grep, #group_by, #inject, #lazy, #max, #max_by, #member?, #min, #min_by, #minmax, #minmax_by, #none?, #one?, #partition, #reduce, #slice_before, #sort_by

Constructor Details

#new(size = 0, obj = nil) ⇒ Object #new(array) ⇒ Object #new(size) {|index| ... } ⇒ Object

Returns a new array.

In the first form, if no arguments are sent, the new array will be empty. When a size and an optional obj are sent, an array is created with size copies of obj. Take notice that all elements will reference the same object obj.

The second form creates a copy of the array passed as a parameter (the array is generated by calling to_ary on the parameter).

first_array = ["Matz", "Guido"]

second_array = Array.new(first_array) #=> ["Matz", "Guido"]

first_array.equal? second_array       #=> false

In the last form, an array of the given size is created. Each element in this array is created by passing the element's index to the given block and storing the return value.

Array.new(3){ |index| index ** 2 }
# => [0, 1, 4]

Common gotchas

When sending the second parameter, the same object will be used as the value for all the array elements:

a = Array.new(2, Hash.new)
# => [{}, {}]

a[0]['cat'] = 'feline'
a # => [{"cat"=>"feline"}, {"cat"=>"feline"}]

a[1]['cat'] = 'Felix'
a # => [{"cat"=>"Felix"}, {"cat"=>"Felix"}]

Since all the Array elements store the same hash, changes to one of them will affect them all.

If multiple copies are what you want, you should use the block version which uses the result of that block each time an element of the array needs to be initialized:

a = Array.new(2) { Hash.new }
a[0]['cat'] = 'feline'
a # => [{"cat"=>"feline"}, {}]

Overloads:


644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# File 'array.c', line 644

static VALUE
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
{
    long len;
    VALUE size, val;

    rb_ary_modify(ary);
    if (argc == 0) {
	if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) {
	    xfree(RARRAY_PTR(ary));
	}
        rb_ary_unshare_safe(ary);
        FL_SET_EMBED(ary);
	ARY_SET_EMBED_LEN(ary, 0);
	if (rb_block_given_p()) {
	    rb_warning("given block not used");
	}
	return ary;
    }
    rb_scan_args(argc, argv, "02", &size, &val);
    if (argc == 1 && !FIXNUM_P(size)) {
	val = rb_check_array_type(size);
	if (!NIL_P(val)) {
	    rb_ary_replace(ary, val);
	    return ary;
	}
    }

    len = NUM2LONG(size);
    if (len < 0) {
	rb_raise(rb_eArgError, "negative array size");
    }
    if (len > ARY_MAX_SIZE) {
	rb_raise(rb_eArgError, "array size too big");
    }
    rb_ary_modify(ary);
    ary_resize_capa(ary, len);
    if (rb_block_given_p()) {
	long i;

	if (argc == 2) {
	    rb_warn("block supersedes default value argument");
	}
	for (i=0; i<len; i++) {
	    rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
	    ARY_SET_LEN(ary, i + 1);
	}
    }
    else {
	memfill(RARRAY_PTR(ary), len, val);
	ARY_SET_LEN(ary, len);
    }
    return ary;
}

Class Method Details

.[]Object

Returns a new array populated with the given objects.

Array.[]( 1, 'a', /^A/ ) # => [1, "a", /^A/]
Array[ 1, 'a', /^A/ ]    # => [1, "a", /^A/]
[ 1, 'a', /^A/ ]         # => [1, "a", /^A/]

707
708
709
710
711
712
713
714
715
716
717
# File 'array.c', line 707

static VALUE
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
{
    VALUE ary = ary_new(klass, argc);
    if (argc > 0 && argv) {
        MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
        ARY_SET_LEN(ary, argc);
    }

    return ary;
}

.try_convert(obj) ⇒ Array?

Tries to convert obj into an array, using to_ary method. Returns the converted array or nil if obj cannot be converted for any reason. This method can be used to check if an argument is an array.

Array.try_convert([1])   #=> [1]
Array.try_convert("1")   #=> nil

if tmp = Array.try_convert(arg)
  # the argument is an array
elsif tmp = String.try_convert(arg)
  # the argument is a string
end

Returns:


582
583
584
585
586
# File 'array.c', line 582

static VALUE
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
{
    return rb_check_array_type(ary);
}

Instance Method Details

#&(other_ary) ⇒ Object

Set Intersection --- Returns a new array containing elements common to the two arrays, excluding any duplicates.

It compares elements using their #hash and #eql? methods for efficiency.

[ 1, 1, 3, 5 ] & [ 1, 2, 3 ]                 #=> [ 1, 3 ]
[ 'a', 'b', 'b', 'z' ] & [ 'a', 'b', 'c' ]   #=> [ 'a', 'b' ]

See also Array#uniq.


3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
# File 'array.c', line 3847

static VALUE
rb_ary_and(VALUE ary1, VALUE ary2)
{
    VALUE hash, ary3, v;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
	    RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
    hash = ary_make_hash(ary2);

    if (RHASH_EMPTY_P(hash))
        return ary3;

    for (i=0; i<RARRAY_LEN(ary1); i++) {
	vv = (st_data_t)(v = rb_ary_elt(ary1, i));
	if (st_delete(RHASH_TBL(hash), &vv, 0)) {
	    rb_ary_push(ary3, v);
	}
    }
    ary_recycle_hash(hash);

    return ary3;
}

#*(int) ⇒ Object #*(str) ⇒ Object

Repetition --- With a String argument, equivalent to ary.join(str).

Otherwise, returns a new array built by concatenating the int copies of self.

[ 1, 2, 3 ] * 3    #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
[ 1, 2, 3 ] * ","  #=> "1,2,3"

3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
# File 'array.c', line 3411

static VALUE
rb_ary_times(VALUE ary, VALUE times)
{
    VALUE ary2, tmp, *ptr, *ptr2;
    long t, len;

    tmp = rb_check_string_type(times);
    if (!NIL_P(tmp)) {
	return rb_ary_join(ary, tmp);
    }

    len = NUM2LONG(times);
    if (len == 0) {
	ary2 = ary_new(rb_obj_class(ary), 0);
	goto out;
    }
    if (len < 0) {
	rb_raise(rb_eArgError, "negative argument");
    }
    if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
	rb_raise(rb_eArgError, "argument too big");
    }
    len *= RARRAY_LEN(ary);

    ary2 = ary_new(rb_obj_class(ary), len);
    ARY_SET_LEN(ary2, len);

    ptr = RARRAY_PTR(ary);
    ptr2 = RARRAY_PTR(ary2);
    t = RARRAY_LEN(ary);
    if (0 < t) {
        MEMCPY(ptr2, ptr, VALUE, t);
        while (t <= len/2) {
            MEMCPY(ptr2+t, ptr2, VALUE, t);
            t *= 2;
        }
        if (t < len) {
            MEMCPY(ptr2+t, ptr2, VALUE, len-t);
        }
    }
  out:
    OBJ_INFECT(ary2, ary);

    return ary2;
}

#+(other_ary) ⇒ Object

Concatenation --- Returns a new array built by concatenating the two arrays together to produce a third array.

[ 1, 2, 3 ] + [ 4, 5 ]    #=> [ 1, 2, 3, 4, 5 ]
a = [ "a", "b", "c" ]
a + [ "d", "e", "f" ]
a                         #=> [ "a", "b", "c", "d", "e", "f" ]

See also Array#concat.


3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
# File 'array.c', line 3353

VALUE
rb_ary_plus(VALUE x, VALUE y)
{
    VALUE z;
    long len;

    y = to_ary(y);
    len = RARRAY_LEN(x) + RARRAY_LEN(y);
    z = rb_ary_new2(len);
    MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
    MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
    ARY_SET_LEN(z, len);
    return z;
}

#-(other_ary) ⇒ Object

Array Difference

Returns a new array that is a copy of the original array, removing any items that also appear in other_ary.

It compares elements using their #hash and #eql? methods for efficiency.

[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ]  #=>  [ 3, 3, 5 ]

If you need set-like behavior, see the library class Set.


3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
# File 'array.c', line 3813

static VALUE
rb_ary_diff(VALUE ary1, VALUE ary2)
{
    VALUE ary3;
    volatile VALUE hash;
    long i;

    hash = ary_make_hash(to_ary(ary2));
    ary3 = rb_ary_new();

    for (i=0; i<RARRAY_LEN(ary1); i++) {
	if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue;
	rb_ary_push(ary3, rb_ary_elt(ary1, i));
    }
    ary_recycle_hash(hash);
    return ary3;
}

#<<(obj) ⇒ Object

Append---Pushes the given object on to the end of this array. This expression returns the array itself, so several appends may be chained together.

[ 1, 2 ] << "c" << "d" << [ 3, 4 ]
        #=>  [ 1, 2, "c", "d", [ 3, 4 ] ]

822
823
824
825
826
827
828
829
830
831
# File 'array.c', line 822

VALUE
rb_ary_push(VALUE ary, VALUE item)
{
    long idx = RARRAY_LEN(ary);

    ary_ensure_room_for_push(ary, 1);
    RARRAY_PTR(ary)[idx] = item;
    ARY_SET_LEN(ary, idx + 1);
    return ary;
}

#<=>(other_ary) ⇒ -1, ...

Comparison --- Returns an integer (-1, 0, or +1) if this array is less than, equal to, or greater than other_ary.

Each object in each array is compared (using the <=> operator).

Arrays are compared in an "element-wise" manner; the first two elements that are not equal will determine the return value for the whole comparison.

If all the values are equal, then the return is based on a comparison of the array lengths. Thus, two arrays are "equal" according to Array#<=> if, and only if, they have the same length and the value of each element is equal to the value of the corresponding element in the other array.

[ "a", "a", "c" ]    <=> [ "a", "b", "c" ]   #=> -1
[ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ]            #=> +1

Returns:

  • (-1, 0, +1, nil)

3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
# File 'array.c', line 3722

VALUE
rb_ary_cmp(VALUE ary1, VALUE ary2)
{
    long len;
    VALUE v;

    ary2 = rb_check_array_type(ary2);
    if (NIL_P(ary2)) return Qnil;
    if (ary1 == ary2) return INT2FIX(0);
    v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
    if (v != Qundef) return v;
    len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
    if (len == 0) return INT2FIX(0);
    if (len > 0) return INT2FIX(1);
    return INT2FIX(-1);
}

#==(other_ary) ⇒ Boolean

Equality --- Two arrays are equal if they contain the same number of elements and if each element is equal to (according to Object#==) the corresponding element in other_ary.

[ "a", "c" ]    == [ "a", "c", 7 ]     #=> false
[ "a", "c", 7 ] == [ "a", "c", 7 ]     #=> true
[ "a", "c", 7 ] == [ "a", "d", "f" ]   #=> false

Returns:

  • (Boolean)

3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
# File 'array.c', line 3573

static VALUE
rb_ary_equal(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (!RB_TYPE_P(ary2, T_ARRAY)) {
	if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
	    return Qfalse;
	}
	return rb_equal(ary2, ary1);
    }
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
}

#[](index) ⇒ Object? #[](start, length) ⇒ nil #[](range) ⇒ nil #slice(index) ⇒ Object? #slice(start, length) ⇒ nil #slice(range) ⇒ nil

Element Reference --- Returns the element at index, or returns a subarray starting at the start index and continuing for length elements, or returns a subarray specified by range of indices.

Negative indices count backward from the end of the array (-1 is the last element). For start and range cases the starting index is just before an element. Additionally, an empty array is returned when the starting index for an element range is at the end of the array.

Returns nil if the index (or starting index) are out of range.

a = [ "a", "b", "c", "d", "e" ]
a[2] +  a[0] + a[1]    #=> "cab"
a[6]                   #=> nil
a[1, 2]                #=> [ "b", "c" ]
a[1..3]                #=> [ "b", "c", "d" ]
a[4..7]                #=> [ "e" ]
a[6..10]               #=> nil
a[-3, 3]               #=> [ "c", "d", "e" ]
# special cases
a[5]                   #=> nil
a[6, 1]                #=> nil
a[5, 1]                #=> []
a[5..10]               #=> []

Overloads:

  • #[](index) ⇒ Object?

    Returns:

  • #[](start, length) ⇒ nil

    Returns:

    • (nil)
  • #[](range) ⇒ nil

    Returns:

    • (nil)
  • #slice(index) ⇒ Object?

    Returns:

  • #slice(start, length) ⇒ nil

    Returns:

    • (nil)
  • #slice(range) ⇒ nil

    Returns:

    • (nil)

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
# File 'array.c', line 1163

VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg;
    long beg, len;

    if (argc == 2) {
	beg = NUM2LONG(argv[0]);
	len = NUM2LONG(argv[1]);
	if (beg < 0) {
	    beg += RARRAY_LEN(ary);
	}
	return rb_ary_subseq(ary, beg, len);
    }
    if (argc != 1) {
	rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    arg = argv[0];
    /* special case - speeding up */
    if (FIXNUM_P(arg)) {
	return rb_ary_entry(ary, FIX2LONG(arg));
    }
    /* check if idx is Range */
    switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
      case Qfalse:
	break;
      case Qnil:
	return Qnil;
      default:
	return rb_ary_subseq(ary, beg, len);
    }
    return rb_ary_entry(ary, NUM2LONG(arg));
}

#[]=(index) ⇒ Object #[]=(start, length) ⇒ Object? #[]=(range) ⇒ Object?

Element Assignment --- Sets the element at index, or replaces a subarray from the start index for length elements, or replaces a subarray specified by the range of indices.

If indices are greater than the current capacity of the array, the array grows automatically. Elements are inserted into the array at start if length is zero.

Negative indices will count backward from the end of the array. For start and range cases the starting index is just before an element.

An IndexError is raised if a negative index points past the beginning of the array.

See also Array#push, and Array#unshift.

a = Array.new
a[4] = "4";                 #=> [nil, nil, nil, nil, "4"]
a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
a[1..2] = [ 1, 2 ]          #=> ["a", 1, 2, nil, "4"]
a[0, 2] = "?"               #=> ["?", 2, nil, "4"]
a[0..2] = "A"               #=> ["A", "4"]
a[-1]   = "Z"               #=> ["A", "Z"]
a[1..-1] = nil              #=> ["A", nil]
a[1..-1] = []               #=> ["A"]
a[0, 0] = [ 1, 2 ]          #=> [1, 2, "A"]
a[3, 0] = "B"               #=> [1, 2, "A", "B"]

Overloads:


1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
# File 'array.c', line 1586

static VALUE
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
{
    long offset, beg, len;

    if (argc == 3) {
	rb_ary_modify_check(ary);
	beg = NUM2LONG(argv[0]);
	len = NUM2LONG(argv[1]);
	rb_ary_splice(ary, beg, len, argv[2]);
	return argv[2];
    }
    rb_check_arity(argc, 2, 2);
    rb_ary_modify_check(ary);
    if (FIXNUM_P(argv[0])) {
	offset = FIX2LONG(argv[0]);
	goto fixnum;
    }
    if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
	/* check if idx is Range */
	rb_ary_splice(ary, beg, len, argv[1]);
	return argv[1];
    }

    offset = NUM2LONG(argv[0]);
fixnum:
    rb_ary_store(ary, offset, argv[1]);
    return argv[1];
}

#assoc(obj) ⇒ nil

Searches through an array whose elements are also arrays comparing obj with the first element of each contained array using obj.==.

Returns the first contained array that matches (that is, the first associated array), or nil if no match is found.

See also Array#rassoc

s1 = [ "colors", "red", "blue", "green" ]
s2 = [ "letters", "a", "b", "c" ]
s3 = "foo"
a  = [ s1, s2, s3 ]
a.assoc("letters")  #=> [ "letters", "a", "b", "c" ]
a.assoc("foo")      #=> nil

Returns:

  • (nil)

3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
# File 'array.c', line 3477

VALUE
rb_ary_assoc(VALUE ary, VALUE key)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
	v = rb_check_array_type(RARRAY_PTR(ary)[i]);
	if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
	    rb_equal(RARRAY_PTR(v)[0], key))
	    return v;
    }
    return Qnil;
}

#at(index) ⇒ Object?

Returns the element at index. A negative index counts from the end of self. Returns nil if the index is out of range. See also Array#[].

a = [ "a", "b", "c", "d", "e" ]
a.at(0)     #=> "a"
a.at(-1)    #=> "e"

Returns:


1210
1211
1212
1213
1214
# File 'array.c', line 1210

static VALUE
rb_ary_at(VALUE ary, VALUE pos)
{
    return rb_ary_entry(ary, NUM2LONG(pos));
}

#bsearch {|x| ... } ⇒ Object

By using binary search, finds a value from this array which meets the given condition in O(log n) where n is the size of the array.

You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the array must be monotone (or sorted) with respect to the block.

In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be an index i (0 <= i <= ary.size) so that:

  • the block returns false for any element whose index is less than i, and

  • the block returns true for any element whose index is greater than or equal to i.

This method returns the i-th element. If i is equal to ary.size, it returns nil.

ary = [0, 4, 7, 10, 12]
ary.bsearch {|x| x >=   4 } #=> 4
ary.bsearch {|x| x >=   6 } #=> 7
ary.bsearch {|x| x >=  -1 } #=> 0
ary.bsearch {|x| x >= 100 } #=> nil

In find-any mode (this behaves like libc's bsearch(3)), the block must return a number, and there must be two indices i and j (0 <= i <= j <= ary.size) so that:

  • the block returns a positive number for ary if 0 <= k < i,

  • the block returns zero for ary if i <= k < j, and

  • the block returns a negative number for ary if j <= k < ary.size.

Under this condition, this method returns any element whose index is within i...j. If i is equal to j (i.e., there is no element that satisfies the block), this method returns nil.

ary = [0, 4, 7, 10, 12]
# try to find v such that 4 <= v < 8
ary.bsearch {|x| 1 - x / 4 } #=> 4 or 7
# try to find v such that 8 <= v < 10
ary.bsearch {|x| 4 - x / 2 } #=> nil

You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.

Yields:

  • (x)

2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
# File 'array.c', line 2434

static VALUE
rb_ary_bsearch(VALUE ary)
{
    long low = 0, high = RARRAY_LEN(ary), mid;
    int smaller = 0, satisfied = 0;
    VALUE v, val;

    RETURN_ENUMERATOR(ary, 0, 0);
    while (low < high) {
	mid = low + ((high - low) / 2);
	val = rb_ary_entry(ary, mid);
	v = rb_yield(val);
	if (FIXNUM_P(v)) {
	    if (FIX2INT(v) == 0) return val;
	    smaller = FIX2INT(v) < 0;
	}
	else if (v == Qtrue) {
	    satisfied = 1;
	    smaller = 1;
	}
	else if (v == Qfalse || v == Qnil) {
	    smaller = 0;
	}
	else if (rb_obj_is_kind_of(v, rb_cNumeric)) {
	    switch (rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0))) {
		case 0: return val;
		case 1: smaller = 1; break;
		case -1: smaller = 0;
	    }
	}
	else {
	    rb_raise(rb_eTypeError, "wrong argument type %s"
		" (must be numeric, true, false or nil)",
		rb_obj_classname(v));
	}
	if (smaller) {
	    high = mid;
	}
	else {
	    low = mid + 1;
	}
    }
    if (low == RARRAY_LEN(ary)) return Qnil;
    if (!satisfied) return Qnil;
    return rb_ary_entry(ary, low);
}

#clearObject

Removes all elements from self.

a = [ "a", "b", "c", "d", "e" ]
a.clear    #=> [ ]

3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
# File 'array.c', line 3220

VALUE
rb_ary_clear(VALUE ary)
{
    rb_ary_modify_check(ary);
    ARY_SET_LEN(ary, 0);
    if (ARY_SHARED_P(ary)) {
	if (!ARY_EMBED_P(ary)) {
	    rb_ary_unshare(ary);
	    FL_SET_EMBED(ary);
	}
    }
    else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
	ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
    }
    return ary;
}

#collect {|item| ... } ⇒ Object #map {|item| ... } ⇒ Object #collectEnumerator #mapEnumerator

Invokes the given block once for each element of self.

Creates a new array containing the values returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map { |x| x + "!" }   #=> ["a!", "b!", "c!", "d!"]
a                       #=> ["a", "b", "c", "d"]

Overloads:


2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
# File 'array.c', line 2533

static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
    }
    return collect;
}

#collect! {|item| ... } ⇒ Object #map! {|item| ... } ⇒ Object #collect!Enumerator #map!Enumerator

Invokes the given block once for each element of self, replacing the element with the value returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map! {|x| x + "!" }
a #=>  [ "a!", "b!", "c!", "d!" ]

Overloads:


2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
# File 'array.c', line 2567

static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
    }
    return ary;
}

#combination(n) {|c| ... } ⇒ Object #combination(n) ⇒ Enumerator

When invoked with a block, yields all combinations of length n of elements from the array and then returns the array itself.

The implementation makes no guarantees about the order in which the combinations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3, 4]
a.combination(1).to_a  #=> [[1],[2],[3],[4]]
a.combination(2).to_a  #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
a.combination(3).to_a  #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
a.combination(4).to_a  #=> [[1,2,3,4]]
a.combination(0).to_a  #=> [[]] # one combination of length 0
a.combination(5).to_a  #=> []   # no combinations of length 5

Overloads:


4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
# File 'array.c', line 4723

static VALUE
rb_ary_combination(VALUE ary, VALUE num)
{
    long n, i, len;

    n = NUM2LONG(num);
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size);
    len = RARRAY_LEN(ary);
    if (n < 0 || len < n) {
	/* yield nothing */
    }
    else if (n == 0) {
	rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
	for (i = 0; i < len; i++) {
	    rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
	}
    }
    else {
	volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
	long *stack = (long*)RSTRING_PTR(t0);
	volatile VALUE cc = tmpary(n);
	VALUE *chosen = RARRAY_PTR(cc);
	long lev = 0;

	MEMZERO(stack, long, n);
	stack[0] = -1;
	for (;;) {
	    chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
	    for (lev++; lev < n; lev++) {
		chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
	    }
	    rb_yield(rb_ary_new4(n, chosen));
	    if (RBASIC(t0)->klass) {
		rb_raise(rb_eRuntimeError, "combination reentered");
	    }
	    do {
		if (lev == 0) goto done;
		stack[lev--]++;
	    } while (stack[lev+1]+n == len+lev+1);
	}
    done:
	tmpbuf_discard(t0);
	tmpary_discard(cc);
    }
    return ary;
}

#compactObject

Returns a copy of self with all nil elements removed.

[ "a", nil, "b", nil, "c", nil ].compact
                  #=> [ "a", "b", "c" ]

4081
4082
4083
4084
4085
4086
4087
# File 'array.c', line 4081

static VALUE
rb_ary_compact(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_compact_bang(ary);
    return ary;
}

#compact!nil

Removes nil elements from the array.

Returns nil if no changes were made, otherwise returns the array.

[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
[ "a", "b", "c" ].compact!           #=> nil

Returns:

  • (nil)

4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
# File 'array.c', line 4045

static VALUE
rb_ary_compact_bang(VALUE ary)
{
    VALUE *p, *t, *end;
    long n;

    rb_ary_modify(ary);
    p = t = RARRAY_PTR(ary);
    end = p + RARRAY_LEN(ary);

    while (t < end) {
	if (NIL_P(*t)) t++;
	else *p++ = *t++;
    }
    n = p - RARRAY_PTR(ary);
    if (RARRAY_LEN(ary) == n) {
	return Qnil;
    }
    ARY_SET_LEN(ary, n);
    if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
	ary_resize_capa(ary, n * 2);
    }

    return ary;
}

#concat(other_ary) ⇒ Object

Appends the elements of other_ary to self.

[ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
a = [ 1, 2, 3 ]
a.concat( [ 4, 5 ] )
a                                 #=> [ 1, 2, 3, 4, 5 ]

See also Array#+.


3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
# File 'array.c', line 3382

VALUE
rb_ary_concat(VALUE x, VALUE y)
{
    rb_ary_modify_check(x);
    y = to_ary(y);
    if (RARRAY_LEN(y) > 0) {
	rb_ary_splice(x, RARRAY_LEN(x), 0, y);
    }
    return x;
}

#countInteger #count(obj) ⇒ Integer #count {|item| ... } ⇒ Integer

Returns the number of elements.

If an argument is given, counts the number of elements which equal obj using ===.

If a block is given, counts the number of elements for which the block returns a true value.

ary = [1, 2, 4, 2]
ary.count                  #=> 4
ary.count(2)               #=> 2
ary.count { |x| x%2 == 0 } #=> 3

Overloads:


4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
# File 'array.c', line 4110

static VALUE
rb_ary_count(int argc, VALUE *argv, VALUE ary)
{
    long n = 0;

    if (argc == 0) {
	VALUE *p, *pend;

	if (!rb_block_given_p())
	    return LONG2NUM(RARRAY_LEN(ary));

	for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
	    if (RTEST(rb_yield(*p))) n++;
	}
    }
    else {
	VALUE obj, *p, *pend;

	rb_scan_args(argc, argv, "1", &obj);
	if (rb_block_given_p()) {
	    rb_warn("given block not used");
	}
	for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
	    if (rb_equal(*p, obj)) n++;
	}
    }

    return LONG2NUM(n);
}

#cycle(n = nil) {|obj| ... } ⇒ nil #cycle(n = nil) ⇒ Enumerator

Calls the given block for each element n times or forever if nil is given.

Does nothing if a non-positive number is given or the array is empty.

Returns nil if the loop has finished without getting interrupted.

If no block is given, an Enumerator is returned instead.

a = ["a", "b", "c"]
a.cycle { |x| puts x }     # print, a, b, c, a, b, c,.. forever.
a.cycle(2) { |x| puts x }  # print, a, b, c, a, b, c.

Overloads:

  • #cycle(n = nil) {|obj| ... } ⇒ nil

    Yields:

    • (obj)

    Returns:

    • (nil)
  • #cycle(n = nil) ⇒ Enumerator

    Returns:


4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
# File 'array.c', line 4510

static VALUE
rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
{
    long n, i;
    VALUE nv = Qnil;

    rb_scan_args(argc, argv, "01", &nv);

    RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size);
    if (NIL_P(nv)) {
        n = -1;
    }
    else {
        n = NUM2LONG(nv);
        if (n <= 0) return Qnil;
    }

    while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
        for (i=0; i<RARRAY_LEN(ary); i++) {
            rb_yield(RARRAY_PTR(ary)[i]);
        }
    }
    return Qnil;
}

#delete(obj) ⇒ nil #delete(obj) { ... } ⇒ Object

Deletes all items from self that are equal to obj.

Returns the last deleted item, or nil if no matching item is found.

If the optional code block is given, the result of the block is returned if the item is not found. (To remove nil elements and get an informative return value, use Array#compact!)

a = [ "a", "b", "b", "b", "c" ]
a.delete("b")                   #=> "b"
a                               #=> ["a", "c"]
a.delete("z")                   #=> nil
a.delete("z") { "not found" }   #=> "not found"

Overloads:

  • #delete(obj) ⇒ nil

    Returns:

    • (nil)
  • #delete(obj) { ... } ⇒ Object

    Yields:


2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
# File 'array.c', line 2760

VALUE
rb_ary_delete(VALUE ary, VALUE item)
{
    VALUE v = item;
    long i1, i2;

    for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
	VALUE e = RARRAY_PTR(ary)[i1];

	if (rb_equal(e, item)) {
	    v = e;
	    continue;
	}
	if (i1 != i2) {
	    rb_ary_store(ary, i2, e);
	}
	i2++;
    }
    if (RARRAY_LEN(ary) == i2) {
	if (rb_block_given_p()) {
	    return rb_yield(item);
	}
	return Qnil;
    }

    ary_resize_smaller(ary, i2);

    return v;
}

#delete_at(index) ⇒ Object?

Deletes the element at the specified index, returning that element, or nil if the index is out of range.

See also Array#slice!

a = ["ant", "bat", "cat", "dog"]
a.delete_at(2)    #=> "cat"
a                 #=> ["ant", "bat", "dog"]
a.delete_at(99)   #=> nil

Returns:


2849
2850
2851
2852
2853
# File 'array.c', line 2849

static VALUE
rb_ary_delete_at_m(VALUE ary, VALUE pos)
{
    return rb_ary_delete_at(ary, NUM2LONG(pos));
}

#delete_if {|item| ... } ⇒ Object #delete_ifEnumerator

Deletes every element of self for which block evaluates to true.

The array is changed instantly every time the block is called, not after the iteration is over.

See also Array#reject!

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c" ]
a.delete_if {|x| x >= "b" }   #=> ["a"]

Overloads:


3026
3027
3028
3029
3030
3031
3032
# File 'array.c', line 3026

static VALUE
rb_ary_delete_if(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    ary_reject_bang(ary);
    return ary;
}

#drop(n) ⇒ Object

Drops first n elements from ary and returns the rest of the elements in an array.

If a negative number is given, raises an ArgumentError.

See also Array#take

a = [1, 2, 3, 4, 5, 0]
a.drop(3)             #=> [4, 5, 0]

5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
# File 'array.c', line 5159

static VALUE
rb_ary_drop(VALUE ary, VALUE n)
{
    VALUE result;
    long pos = NUM2LONG(n);
    if (pos < 0) {
	rb_raise(rb_eArgError, "attempt to drop negative size");
    }

    result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
    if (result == Qnil) result = rb_ary_new();
    return result;
}

#drop_while {|arr| ... } ⇒ Object #drop_whileEnumerator

Drops elements up to, but not including, the first element for which the block returns nil or false and returns an array containing the remaining elements.

If no block is given, an Enumerator is returned instead.

See also Array#take_while

a = [1, 2, 3, 4, 5, 0]
a.drop_while {|i| i < 3 }   #=> [3, 4, 5, 0]

Overloads:


5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
# File 'array.c', line 5191

static VALUE
rb_ary_drop_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
    }
    return rb_ary_drop(ary, LONG2FIX(i));
}

#each {|item| ... } ⇒ Object #eachEnumerator

Calls the given block once for each element in self, passing that element as a parameter.

An Enumerator is returned if no block is given.

a = [ "a", "b", "c" ]
a.each {|x| print x, " -- " }

produces:

a -- b -- c --

Overloads:


1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
# File 'array.c', line 1670

VALUE
rb_ary_each(VALUE array)
{
    long i;
    volatile VALUE ary = array;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    for (i=0; i<RARRAY_LEN(ary); i++) {
	rb_yield(RARRAY_PTR(ary)[i]);
    }
    return ary;
}

#each_index {|index| ... } ⇒ Object #each_indexEnumerator

Same as Array#each, but passes the index of the element instead of the element itself.

An Enumerator is returned if no block is given.

a = [ "a", "b", "c" ]
a.each_index {|x| print x, " -- " }

produces:

0 -- 1 -- 2 --

Overloads:


1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
# File 'array.c', line 1701

static VALUE
rb_ary_each_index(VALUE ary)
{
    long i;
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);

    for (i=0; i<RARRAY_LEN(ary); i++) {
	rb_yield(LONG2NUM(i));
    }
    return ary;
}

#empty?Boolean

Returns true if self contains no elements.

[].empty?   #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)

1770
1771
1772
1773
1774
1775
1776
# File 'array.c', line 1770

static VALUE
rb_ary_empty_p(VALUE ary)
{
    if (RARRAY_LEN(ary) == 0)
	return Qtrue;
    return Qfalse;
}

#eql?(other) ⇒ Boolean

Returns true if self and other are the same object, or are both arrays with the same content.

Returns:

  • (Boolean)

Returns:

  • (Boolean)

3608
3609
3610
3611
3612
3613
3614
3615
# File 'array.c', line 3608

static VALUE
rb_ary_eql(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse;
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
}

#fetch(index) ⇒ Object #fetch(index, default) ⇒ Object #fetch(index) {|index| ... } ⇒ Object

Tries to return the element at position index, but throws an IndexError exception if the referenced index lies outside of the array bounds. This error can be prevented by supplying a second argument, which will act as a default value.

Alternatively, if a block is given it will only be executed when an invalid index is referenced. Negative values of index count from the end of the array.

a = [ 11, 22, 33, 44 ]
a.fetch(1)               #=> 22
a.fetch(-1)              #=> 44
a.fetch(4, 'cat')        #=> "cat"
a.fetch(100) { |i| puts "#{i} is out of bounds" }
                         #=> "100 is out of bounds"

Overloads:


1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
# File 'array.c', line 1293

static VALUE
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
{
    VALUE pos, ifnone;
    long block_given;
    long idx;

    rb_scan_args(argc, argv, "11", &pos, &ifnone);
    block_given = rb_block_given_p();
    if (block_given && argc == 2) {
	rb_warn("block supersedes default value argument");
    }
    idx = NUM2LONG(pos);

    if (idx < 0) {
	idx +=  RARRAY_LEN(ary);
    }
    if (idx < 0 || RARRAY_LEN(ary) <= idx) {
	if (block_given) return rb_yield(pos);
	if (argc == 1) {
	    rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
			idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
	}
	return ifnone;
    }
    return RARRAY_PTR(ary)[idx];
}

#fill(obj) ⇒ Object #fill(obj, start[, length]) ⇒ Object #fill(obj, range) ⇒ Object #fill {|index| ... } ⇒ Object #fill(start[, length]) {|index| ... } ⇒ Object #fill(range) {|index| ... } ⇒ Object

The first three forms set the selected elements of self (which may be the entire array) to obj.

A start of nil is equivalent to zero.

A length of nil is equivalent to the length of the array.

The last three forms fill the array with the value of the given block, which is passed the absolute index of each element to be filled.

Negative values of start count from the end of the array, where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.fill("x")              #=> ["x", "x", "x", "x"]
a.fill("z", 2, 2)        #=> ["x", "x", "z", "z"]
a.fill("y", 0..1)        #=> ["y", "y", "z", "z"]
a.fill { |i| i*i }       #=> [0, 1, 4, 9]
a.fill(-2) { |i| i*i*i } #=> [0, 1, 8, 27]

Overloads:

  • #fill {|index| ... } ⇒ Object

    Yields:

  • #fill(start[, length]) {|index| ... } ⇒ Object

    Yields:

  • #fill(range) {|index| ... } ⇒ Object

    Yields:


3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
# File 'array.c', line 3267

static VALUE
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
{
    VALUE item, arg1, arg2;
    long beg = 0, end = 0, len = 0;
    VALUE *p, *pend;
    int block_p = FALSE;

    if (rb_block_given_p()) {
	block_p = TRUE;
	rb_scan_args(argc, argv, "02", &arg1, &arg2);
	argc += 1;		/* hackish */
    }
    else {
	rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
    }
    switch (argc) {
      case 1:
	beg = 0;
	len = RARRAY_LEN(ary);
	break;
      case 2:
	if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
	    break;
	}
	/* fall through */
      case 3:
	beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
	if (beg < 0) {
	    beg = RARRAY_LEN(ary) + beg;
	    if (beg < 0) beg = 0;
	}
	len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
	break;
    }
    rb_ary_modify(ary);
    if (len < 0) {
        return ary;
    }
    if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
	rb_raise(rb_eArgError, "argument too big");
    }
    end = beg + len;
    if (RARRAY_LEN(ary) < end) {
	if (end >= ARY_CAPA(ary)) {
	    ary_resize_capa(ary, end);
	}
	rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary));
	ARY_SET_LEN(ary, end);
    }

    if (block_p) {
	VALUE v;
	long i;

	for (i=beg; i<end; i++) {
	    v = rb_yield(LONG2NUM(i));
	    if (i>=RARRAY_LEN(ary)) break;
	    RARRAY_PTR(ary)[i] = v;
	}
    }
    else {
	p = RARRAY_PTR(ary) + beg;
	pend = p + len;
	while (p < pend) {
	    *p++ = item;
	}
    }
    return ary;
}

#index(obj) ⇒ Integer? #index {|item| ... } ⇒ Integer? #indexEnumerator

Returns the index of the first object in ary such that the object is == to obj.

If a block is given instead of an argument, returns the index of the first object for which the block returns true. Returns nil if no match is found.

See also Array#rindex.

An Enumerator is returned if neither a block nor argument is given.

a = [ "a", "b", "c" ]
a.index("b")              #=> 1
a.index("z")              #=> nil
a.index { |x| x == "b" }  #=> 1

This is an alias of Array#find_index.

Overloads:


1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
# File 'array.c', line 1346

static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
	RETURN_ENUMERATOR(ary, 0, 0);
	for (i=0; i<RARRAY_LEN(ary); i++) {
	    if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
		return LONG2NUM(i);
	    }
	}
	return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
	rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
	if (rb_equal(RARRAY_PTR(ary)[i], val))
	    return LONG2NUM(i);
    }
    return Qnil;
}

#firstObject? #first(n) ⇒ Object

Returns the first element, or the first n elements, of the array. If the array is empty, the first form returns nil, and the second form returns an empty array. See also Array#last for the opposite effect.

a = [ "q", "r", "s", "t" ]
a.first     #=> "q"
a.first(2)  #=> ["q", "r"]

Overloads:


1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
# File 'array.c', line 1231

static VALUE
rb_ary_first(int argc, VALUE *argv, VALUE ary)
{
    if (argc == 0) {
	if (RARRAY_LEN(ary) == 0) return Qnil;
	return RARRAY_PTR(ary)[0];
    }
    else {
	return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
    }
}

#flattenObject #flatten(level) ⇒ Object

Returns a new array that is a one-dimensional flattening of self (recursively).

That is, for every element that is an array, extract its elements into the new array.

The optional level argument determines the level of recursion to flatten.

s = [ 1, 2, 3 ]           #=> [1, 2, 3]
t = [ 4, 5, 6, [7, 8] ]   #=> [4, 5, 6, [7, 8]]
a = [ s, t, 9, 10 ]       #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
a.flatten                 #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten(1)              #=> [1, 2, 3, [4, 5]]

4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
# File 'array.c', line 4259

static VALUE
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
{
    int mod = 0, level = -1;
    VALUE result, lv;

    rb_scan_args(argc, argv, "01", &lv);
    if (!NIL_P(lv)) level = NUM2INT(lv);
    if (level == 0) return ary_make_shared_copy(ary);

    result = flatten(ary, level, &mod);
    OBJ_INFECT(result, ary);

    return result;
}

#flatten!nil #flatten!(level) ⇒ nil

Flattens self in place.

Returns nil if no modifications were made (i.e., the array contains no subarrays.)

The optional level argument determines the level of recursion to flatten.

a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!   #=> [1, 2, 3, 4, 5]
a.flatten!   #=> nil
a            #=> [1, 2, 3, 4, 5]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!(1) #=> [1, 2, 3, [4, 5]]

Overloads:

  • #flatten!nil

    Returns:

    • (nil)
  • #flatten!(level) ⇒ nil

    Returns:

    • (nil)

4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
# File 'array.c', line 4214

static VALUE
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
{
    int mod = 0, level = -1;
    VALUE result, lv;

    rb_scan_args(argc, argv, "01", &lv);
    rb_ary_modify_check(ary);
    if (!NIL_P(lv)) level = NUM2INT(lv);
    if (level == 0) return Qnil;

    result = flatten(ary, level, &mod);
    if (mod == 0) {
	ary_discard(result);
	return Qnil;
    }
    if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
    rb_ary_replace(ary, result);
    if (mod) ARY_SET_EMBED_LEN(result, 0);

    return ary;
}

#frozen?Boolean

Return true if this array is frozen (or temporarily frozen while being sorted). See also Object#frozen?

Returns:

  • (Boolean)

Returns:

  • (Boolean)

344
345
346
347
348
349
# File 'array.c', line 344

static VALUE
rb_ary_frozen_p(VALUE ary)
{
    if (OBJ_FROZEN(ary)) return Qtrue;
    return Qfalse;
}

#hashFixnum

Compute a hash-code for this array.

Two arrays with the same content will have the same hash code (and will compare using #eql?).

Returns:


3648
3649
3650
3651
3652
# File 'array.c', line 3648

static VALUE
rb_ary_hash(VALUE ary)
{
    return rb_exec_recursive_outer(recursive_hash, ary, 0);
}

#include?(object) ⇒ Boolean

Returns true if the given object is present in self (that is, if any object == object), otherwise returns false.

a = [ "a", "b", "c" ]
a.include?("b")   #=> true
a.include?("z")   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)

3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
# File 'array.c', line 3666

VALUE
rb_ary_includes(VALUE ary, VALUE item)
{
    long i;

    for (i=0; i<RARRAY_LEN(ary); i++) {
	if (rb_equal(RARRAY_PTR(ary)[i], item)) {
	    return Qtrue;
	}
    }
    return Qfalse;
}

#index(obj) ⇒ Integer? #index {|item| ... } ⇒ Integer? #indexEnumerator

Returns the index of the first object in ary such that the object is == to obj.

If a block is given instead of an argument, returns the index of the first object for which the block returns true. Returns nil if no match is found.

See also Array#rindex.

An Enumerator is returned if neither a block nor argument is given.

a = [ "a", "b", "c" ]
a.index("b")              #=> 1
a.index("z")              #=> nil
a.index { |x| x == "b" }  #=> 1

This is an alias of Array#find_index.

Overloads:


1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
# File 'array.c', line 1346

static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
	RETURN_ENUMERATOR(ary, 0, 0);
	for (i=0; i<RARRAY_LEN(ary); i++) {
	    if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
		return LONG2NUM(i);
	    }
	}
	return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
	rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
	if (rb_equal(RARRAY_PTR(ary)[i], val))
	    return LONG2NUM(i);
    }
    return Qnil;
}

#replace(other_ary) ⇒ Object

Replaces the contents of self with the contents of other_ary, truncating or expanding if necessary.

a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
a                              #=> ["x", "y", "z"]

3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
# File 'array.c', line 3168

VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
        VALUE *ptr;
        VALUE shared = 0;

        if (ARY_OWNS_HEAP_P(copy)) {
            xfree(RARRAY_PTR(copy));
        }
        else if (ARY_SHARED_P(copy)) {
            shared = ARY_SHARED(copy);
            FL_UNSET_SHARED(copy);
        }
        FL_SET_EMBED(copy);
        ptr = RARRAY_PTR(orig);
        MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig));
        if (shared) {
            rb_ary_decrement_share(shared);
        }
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
    }
    else {
        VALUE shared = ary_make_shared(orig);
        if (ARY_OWNS_HEAP_P(copy)) {
            xfree(RARRAY_PTR(copy));
        }
        else {
            rb_ary_unshare_safe(copy);
        }
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, RARRAY_PTR(orig));
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
        rb_ary_set_shared(copy, shared);
    }
    return copy;
}

#insert(index, obj...) ⇒ Object

Inserts the given values before the element with the given index.

Negative indices count backwards from the end of the array, where -1 is the last element.

a = %w{ a b c d }
a.insert(2, 99)         #=> ["a", "b", 99, "c", "d"]
a.insert(-2, 1, 2, 3)   #=> ["a", "b", 99, "c", 1, 2, 3, "d"]

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
# File 'array.c', line 1630

static VALUE
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
{
    long pos;

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    rb_ary_modify_check(ary);
    if (argc == 1) return ary;
    pos = NUM2LONG(argv[0]);
    if (pos == -1) {
	pos = RARRAY_LEN(ary);
    }
    if (pos < 0) {
	pos++;
    }
    rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
    return ary;
}

#inspectString #to_sString Also known as: to_s

Creates a string representation of self.

[ "a", "b", "c" ].to_s     #=> "[\"a\", \"b\", \"c\"]"

Overloads:


1987
1988
1989
1990
1991
1992
# File 'array.c', line 1987

static VALUE
rb_ary_inspect(VALUE ary)
{
    if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
    return rb_exec_recursive(inspect_ary, ary, 0);
}

#join(separator = $,) ⇒ String

Returns a string created by converting each element of the array to a string, separated by the given separator. If the separator is nil, it uses current $,. If both the separator and $, are nil, it uses empty string.

[ "a", "b", "c" ].join        #=> "abc"
[ "a", "b", "c" ].join("-")   #=> "a-b-c"

Returns:


1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
# File 'array.c', line 1942

static VALUE
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE sep;

    rb_scan_args(argc, argv, "01", &sep);
    if (NIL_P(sep)) sep = rb_output_fs;

    return rb_ary_join(ary, sep);
}

#keep_if {|item| ... } ⇒ Object #keep_ifEnumerator

Deletes every element of self for which the given block evaluates to false.

See also Array#select!

If no block is given, an Enumerator is returned instead.

a = %w{ a b c d e f }
a.keep_if { |v| v =~ /[aeiou]/ }  #=> ["a", "e"]

Overloads:


2719
2720
2721
2722
2723
2724
2725
# File 'array.c', line 2719

static VALUE
rb_ary_keep_if(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    rb_ary_select_bang(ary);
    return ary;
}

#lastObject? #last(n) ⇒ Object

Returns the last element(s) of self. If the array is empty, the first form returns nil.

See also Array#first for the opposite effect.

a = [ "w", "x", "y", "z" ]
a.last     #=> "z"
a.last(2)  #=> ["y", "z"]

Overloads:


1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
# File 'array.c', line 1258

VALUE
rb_ary_last(int argc, VALUE *argv, VALUE ary)
{
    if (argc == 0) {
	if (RARRAY_LEN(ary) == 0) return Qnil;
	return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
    }
    else {
	return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
    }
}

#lengthInteger Also known as: size

Returns the number of elements in self. May be zero.

[ 1, 2, 3, 4, 5 ].length   #=> 5
[].length                  #=> 0

Returns:


1754
1755
1756
1757
1758
1759
# File 'array.c', line 1754

static VALUE
rb_ary_length(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    return LONG2NUM(len);
}

#collect {|item| ... } ⇒ Object #map {|item| ... } ⇒ Object #collectEnumerator #mapEnumerator

Invokes the given block once for each element of self.

Creates a new array containing the values returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map { |x| x + "!" }   #=> ["a!", "b!", "c!", "d!"]
a                       #=> ["a", "b", "c", "d"]

Overloads:


2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
# File 'array.c', line 2533

static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
    }
    return collect;
}

#collect! {|item| ... } ⇒ Object #map! {|item| ... } ⇒ Object #collect!Enumerator #map!Enumerator

Invokes the given block once for each element of self, replacing the element with the value returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map! {|x| x + "!" }
a #=>  [ "a!", "b!", "c!", "d!" ]

Overloads:


2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
# File 'array.c', line 2567

static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
    }
    return ary;
}

#packObject

Packs the contents of arr into a binary sequence according to the directives in aTemplateString (see the table below) Directives "A,'' "a,'' and "Z'' may be followed by a count, which gives the width of the resulting field. The remaining directives also may take a count, indicating the number of array elements to convert. If the count is an asterisk ("*''), all remaining array elements will be converted. Any of the directives "sSiIlL'' may be followed by an underscore ("_'') or exclamation mark ("!'') to use the underlying platform's native size for the specified type; otherwise, they use a platform-independent size. Spaces are ignored in the template string. See also String#unpack.

a = [ "a", "b", "c" ]
n = [ 65, 66, 67 ]
a.pack("A3A3A3")   #=> "a  b  c  "
a.pack("a3a3a3")   #=> "a\000\000b\000\000c\000\000"
n.pack("ccc")      #=> "ABC"

Directives for pack.

Integer      | Array   |
Directive    | Element | Meaning
---------------------------------------------------------------------------
   C         | Integer | 8-bit unsigned (unsigned char)
   S         | Integer | 16-bit unsigned, native endian (uint16_t)
   L         | Integer | 32-bit unsigned, native endian (uint32_t)
   Q         | Integer | 64-bit unsigned, native endian (uint64_t)
             |         |
   c         | Integer | 8-bit signed (signed char)
   s         | Integer | 16-bit signed, native endian (int16_t)
   l         | Integer | 32-bit signed, native endian (int32_t)
   q         | Integer | 64-bit signed, native endian (int64_t)
             |         |
   S_, S!    | Integer | unsigned short, native endian
   I, I_, I! | Integer | unsigned int, native endian
   L_, L!    | Integer | unsigned long, native endian
             |         |
   s_, s!    | Integer | signed short, native endian
   i, i_, i! | Integer | signed int, native endian
   l_, l!    | Integer | signed long, native endian
             |         |
   S> L> Q>  | Integer | same as the directives without ">" except
   s> l> q>  |         | big endian
   S!> I!>   |         | (available since Ruby 1.9.3)
   L!>       |         | "S>" is same as "n"
   s!> i!>   |         | "L>" is same as "N"
   l!>       |         |
             |         |
   S< L< Q<  | Integer | same as the directives without "<" except
   s< l< q<  |         | little endian
   S!< I!<   |         | (available since Ruby 1.9.3)
   L!<       |         | "S<" is same as "v"
   s!< i!<   |         | "L<" is same as "V"
   l!<       |         |
             |         |
   n         | Integer | 16-bit unsigned, network (big-endian) byte order
   N         | Integer | 32-bit unsigned, network (big-endian) byte order
   v         | Integer | 16-bit unsigned, VAX (little-endian) byte order
   V         | Integer | 32-bit unsigned, VAX (little-endian) byte order
             |         |
   U         | Integer | UTF-8 character
   w         | Integer | BER-compressed integer

Float        |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   D, d      | Float   | double-precision, native format
   F, f      | Float   | single-precision, native format
   E         | Float   | double-precision, little-endian byte order
   e         | Float   | single-precision, little-endian byte order
   G         | Float   | double-precision, network (big-endian) byte order
   g         | Float   | single-precision, network (big-endian) byte order

String       |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   A         | String  | arbitrary binary string (space padded, count is width)
   a         | String  | arbitrary binary string (null padded, count is width)
   Z         | String  | same as ``a'', except that null is added with *
   B         | String  | bit string (MSB first)
   b         | String  | bit string (LSB first)
   H         | String  | hex string (high nibble first)
   h         | String  | hex string (low nibble first)
   u         | String  | UU-encoded string
   M         | String  | quoted printable, MIME encoding (see RFC2045)
   m         | String  | base64 encoded string (see RFC 2045, count is width)
             |         | (if count is 0, no line feed are added, see RFC 4648)
   P         | String  | pointer to a structure (fixed-length string)
   p         | String  | pointer to a null-terminated string

Misc.        |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   @         | ---     | moves to absolute position
   X         | ---     | back up a byte
   x         | ---     | null byte

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
# File 'pack.c', line 368

static VALUE
pack_pack(VALUE ary, VALUE fmt)
{
    static const char nul10[] = "\0\0\0\0\0\0\0\0\0\0";
    static const char spc10[] = "          ";
    const char *p, *pend;
    VALUE res, from, associates = 0;
    char type;
    long items, len, idx, plen;
    const char *ptr;
    int enc_info = 1;		/* 0 - BINARY, 1 - US-ASCII, 2 - UTF-8 */
#ifdef NATINT_PACK
    int natint;		/* native integer */
#endif
    int integer_size, bigendian_p;

    StringValue(fmt);
    p = RSTRING_PTR(fmt);
    pend = p + RSTRING_LEN(fmt);
    res = rb_str_buf_new(0);

    items = RARRAY_LEN(ary);
    idx = 0;

#define TOO_FEW (rb_raise(rb_eArgError, toofew), 0)
#define THISFROM (items > 0 ? RARRAY_PTR(ary)[idx] : TOO_FEW)
#define NEXTFROM (items-- > 0 ? RARRAY_PTR(ary)[idx++] : TOO_FEW)

    while (p < pend) {
	int explicit_endian = 0;
	if (RSTRING_PTR(fmt) + RSTRING_LEN(fmt) != pend) {
	    rb_raise(rb_eRuntimeError, "format string modified");
	}
	type = *p++;		/* get data type */
#ifdef NATINT_PACK
	natint = 0;
#endif

	if (ISSPACE(type)) continue;
	if (type == '#') {
	    while ((p < pend) && (*p != '\n')) {
		p++;
	    }
	    continue;
	}

	{
	    static const char natstr[] = "sSiIlL";
	    static const char endstr[] = "sSiIlLqQ";

          modifiers:
	    switch (*p) {
	      case '_':
	      case '!':
		if (strchr(natstr, type)) {
#ifdef NATINT_PACK
		    natint = 1;
#endif
		    p++;
		}
		else {
		    rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, natstr);
		}
		goto modifiers;

	      case '<':
	      case '>':
		if (!strchr(endstr, type)) {
		    rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, endstr);
		}
		if (explicit_endian) {
		    rb_raise(rb_eRangeError, "Can't use both '<' and '>'");
		}
		explicit_endian = *p++;
		goto modifiers;
	    }
	}

	if (*p == '*') {	/* set data length */
	    len = strchr("@Xxu", type) ? 0
                : strchr("PMm", type) ? 1
                : items;
	    p++;
	}
	else if (ISDIGIT(*p)) {
	    errno = 0;
	    len = STRTOUL(p, (char**)&p, 10);
	    if (errno) {
		rb_raise(rb_eRangeError, "pack length too big");
	    }
	}
	else {
	    len = 1;
	}

	switch (type) {
	  case 'U':
	    /* if encoding is US-ASCII, upgrade to UTF-8 */
	    if (enc_info == 1) enc_info = 2;
	    break;
	  case 'm': case 'M': case 'u':
	    /* keep US-ASCII (do nothing) */
	    break;
	  default:
	    /* fall back to BINARY */
	    enc_info = 0;
	    break;
	}
	switch (type) {
	  case 'A': case 'a': case 'Z':
	  case 'B': case 'b':
	  case 'H': case 'h':
	    from = NEXTFROM;
	    if (NIL_P(from)) {
		ptr = "";
		plen = 0;
	    }
	    else {
		StringValue(from);
		ptr = RSTRING_PTR(from);
		plen = RSTRING_LEN(from);
		OBJ_INFECT(res, from);
	    }

	    if (p[-1] == '*')
		len = plen;

	    switch (type) {
	      case 'a':		/* arbitrary binary string (null padded)  */
	      case 'A':         /* arbitrary binary string (ASCII space padded) */
	      case 'Z':         /* null terminated string  */
		if (plen >= len) {
		    rb_str_buf_cat(res, ptr, len);
		    if (p[-1] == '*' && type == 'Z')
			rb_str_buf_cat(res, nul10, 1);
		}
		else {
		    rb_str_buf_cat(res, ptr, plen);
		    len -= plen;
		    while (len >= 10) {
			rb_str_buf_cat(res, (type == 'A')?spc10:nul10, 10);
			len -= 10;
		    }
		    rb_str_buf_cat(res, (type == 'A')?spc10:nul10, len);
		}
		break;

#define castchar(from) (char)((from) & 0xff)

	      case 'b':		/* bit string (ascending) */
		{
		    int byte = 0;
		    long i, j = 0;

		    if (len > plen) {
			j = (len - plen + 1)/2;
			len = plen;
		    }
		    for (i=0; i++ < len; ptr++) {
			if (*ptr & 1)
			    byte |= 128;
			if (i & 7)
			    byte >>= 1;
			else {
			    char c = castchar(byte);
			    rb_str_buf_cat(res, &c, 1);
			    byte = 0;
			}
		    }
		    if (len & 7) {
			char c;
			byte >>= 7 - (len & 7);
			c = castchar(byte);
			rb_str_buf_cat(res, &c, 1);
		    }
		    len = j;
		    goto grow;
		}
		break;

	      case 'B':		/* bit string (descending) */
		{
		    int byte = 0;
		    long i, j = 0;

		    if (len > plen) {
			j = (len - plen + 1)/2;
			len = plen;
		    }
		    for (i=0; i++ < len; ptr++) {
			byte |= *ptr & 1;
			if (i & 7)
			    byte <<= 1;
			else {
			    char c = castchar(byte);
			    rb_str_buf_cat(res, &c, 1);
			    byte = 0;
			}
		    }
		    if (len & 7) {
			char c;
			byte <<= 7 - (len & 7);
			c = castchar(byte);
			rb_str_buf_cat(res, &c, 1);
		    }
		    len = j;
		    goto grow;
		}
		break;

	      case 'h':		/* hex string (low nibble first) */
		{
		    int byte = 0;
		    long i, j = 0;

		    if (len > plen) {
			j = (len + 1) / 2 - (plen + 1) / 2;
			len = plen;
		    }
		    for (i=0; i++ < len; ptr++) {
			if (ISALPHA(*ptr))
			    byte |= (((*ptr & 15) + 9) & 15) << 4;
			else
			    byte |= (*ptr & 15) << 4;
			if (i & 1)
			    byte >>= 4;
			else {
			    char c = castchar(byte);
			    rb_str_buf_cat(res, &c, 1);
			    byte = 0;
			}
		    }
		    if (len & 1) {
			char c = castchar(byte);
			rb_str_buf_cat(res, &c, 1);
		    }
		    len = j;
		    goto grow;
		}
		break;

	      case 'H':		/* hex string (high nibble first) */
		{
		    int byte = 0;
		    long i, j = 0;

		    if (len > plen) {
			j = (len + 1) / 2 - (plen + 1) / 2;
			len = plen;
		    }
		    for (i=0; i++ < len; ptr++) {
			if (ISALPHA(*ptr))
			    byte |= ((*ptr & 15) + 9) & 15;
			else
			    byte |= *ptr & 15;
			if (i & 1)
			    byte <<= 4;
			else {
			    char c = castchar(byte);
			    rb_str_buf_cat(res, &c, 1);
			    byte = 0;
			}
		    }
		    if (len & 1) {
			char c = castchar(byte);
			rb_str_buf_cat(res, &c, 1);
		    }
		    len = j;
		    goto grow;
		}
		break;
	    }
	    break;

	  case 'c':		/* signed char */
	  case 'C':		/* unsigned char */
	    while (len-- > 0) {
		char c;

		from = NEXTFROM;
		c = (char)num2i32(from);
		rb_str_buf_cat(res, &c, sizeof(char));
	    }
	    break;

	  case 's':		/* signed short */
            integer_size = NATINT_LEN(short, 2);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'S':		/* unsigned short */
            integer_size = NATINT_LEN(short, 2);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'i':		/* signed int */
            integer_size = (int)sizeof(int);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'I':		/* unsigned int */
            integer_size = (int)sizeof(int);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'l':		/* signed long */
            integer_size = NATINT_LEN(long, 4);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'L':		/* unsigned long */
            integer_size = NATINT_LEN(long, 4);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'q':		/* signed quad (64bit) int */
	    integer_size = 8;
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'Q':		/* unsigned quad (64bit) int */
	    integer_size = 8;
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'n':		/* unsigned short (network byte-order)  */
            integer_size = 2;
            bigendian_p = 1;
            goto pack_integer;

	  case 'N':		/* unsigned long (network byte-order) */
            integer_size = 4;
            bigendian_p = 1;
            goto pack_integer;

	  case 'v':		/* unsigned short (VAX byte-order) */
            integer_size = 2;
            bigendian_p = 0;
            goto pack_integer;

	  case 'V':		/* unsigned long (VAX byte-order) */
            integer_size = 4;
            bigendian_p = 0;
            goto pack_integer;

          pack_integer:
	    if (explicit_endian) {
		bigendian_p = explicit_endian == '>';
	    }

            switch (integer_size) {
#if defined(HAVE_INT16_T) && !defined(FORCE_BIG_PACK)
              case SIZEOF_INT16_T:
		while (len-- > 0) {
                    union {
                        int16_t i;
                        char a[sizeof(int16_t)];
                    } v;

		    from = NEXTFROM;
		    v.i = (int16_t)num2i32(from);
		    if (bigendian_p != BIGENDIAN_P()) v.i = swap16(v.i);
		    rb_str_buf_cat(res, v.a, sizeof(int16_t));
		}
		break;
#endif

#if defined(HAVE_INT32_T) && !defined(FORCE_BIG_PACK)
              case SIZEOF_INT32_T:
		while (len-- > 0) {
		    union {
                        int32_t i;
                        char a[sizeof(int32_t)];
                    } v;

		    from = NEXTFROM;
		    v.i = (int32_t)num2i32(from);
		    if (bigendian_p != BIGENDIAN_P()) v.i = swap32(v.i);
		    rb_str_buf_cat(res, v.a, sizeof(int32_t));
		}
		break;
#endif

#if defined(HAVE_INT64_T) && SIZEOF_LONG == SIZEOF_INT64_T && !defined(FORCE_BIG_PACK)
              case SIZEOF_INT64_T:
		while (len-- > 0) {
		    union {
                        int64_t i;
                        char a[sizeof(int64_t)];
                    } v;

		    from = NEXTFROM;
		    v.i = num2i32(from); /* can return 64bit value if SIZEOF_LONG == SIZEOF_INT64_T */
		    if (bigendian_p != BIGENDIAN_P()) v.i = swap64(v.i);
		    rb_str_buf_cat(res, v.a, sizeof(int64_t));
		}
		break;
#endif

	      default:
                if (integer_size > MAX_INTEGER_PACK_SIZE)
                    rb_bug("unexpected intger size for pack: %d", integer_size);
                while (len-- > 0) {
                    union {
                        unsigned long i[(MAX_INTEGER_PACK_SIZE+SIZEOF_LONG-1)/SIZEOF_LONG];
                        char a[(MAX_INTEGER_PACK_SIZE+SIZEOF_LONG-1)/SIZEOF_LONG*SIZEOF_LONG];
                    } v;
                    int num_longs = (integer_size+SIZEOF_LONG-1)/SIZEOF_LONG;
                    int i;

                    from = NEXTFROM;
                    rb_big_pack(from, v.i, num_longs);
                    if (bigendian_p) {
                        for (i = 0; i < num_longs/2; i++) {
                            unsigned long t = v.i[i];
                            v.i[i] = v.i[num_longs-1-i];
                            v.i[num_longs-1-i] = t;
                        }
                    }
		    if (bigendian_p != BIGENDIAN_P()) {
                        for (i = 0; i < num_longs; i++)
                            v.i[i] = swapl(v.i[i]);
                    }
                    rb_str_buf_cat(res,
                                   bigendian_p ?
                                     v.a + sizeof(long)*num_longs - integer_size :
                                     v.a,
                                   integer_size);
                }
                break;
	    }
	    break;

	  case 'f':		/* single precision float in native format */
	  case 'F':		/* ditto */
	    while (len-- > 0) {
		float f;

		from = NEXTFROM;
		f = (float)RFLOAT_VALUE(rb_to_float(from));
		rb_str_buf_cat(res, (char*)&f, sizeof(float));
	    }
	    break;

	  case 'e':		/* single precision float in VAX byte-order */
	    while (len-- > 0) {
		float f;
		FLOAT_CONVWITH(ftmp);

		from = NEXTFROM;
		f = (float)RFLOAT_VALUE(rb_to_float(from));
		f = HTOVF(f,ftmp);
		rb_str_buf_cat(res, (char*)&f, sizeof(float));
	    }
	    break;

	  case 'E':		/* double precision float in VAX byte-order */
	    while (len-- > 0) {
		double d;
		DOUBLE_CONVWITH(dtmp);

		from = NEXTFROM;
		d = RFLOAT_VALUE(rb_to_float(from));
		d = HTOVD(d,dtmp);
		rb_str_buf_cat(res, (char*)&d, sizeof(double));
	    }
	    break;

	  case 'd':		/* double precision float in native format */
	  case 'D':		/* ditto */
	    while (len-- > 0) {
		double d;

		from = NEXTFROM;
		d = RFLOAT_VALUE(rb_to_float(from));
		rb_str_buf_cat(res, (char*)&d, sizeof(double));
	    }
	    break;

	  case 'g':		/* single precision float in network byte-order */
	    while (len-- > 0) {
		float f;
		FLOAT_CONVWITH(ftmp);

		from = NEXTFROM;
		f = (float)RFLOAT_VALUE(rb_to_float(from));
		f = HTONF(f,ftmp);
		rb_str_buf_cat(res, (char*)&f, sizeof(float));
	    }
	    break;

	  case 'G':		/* double precision float in network byte-order */
	    while (len-- > 0) {
		double d;
		DOUBLE_CONVWITH(dtmp);

		from = NEXTFROM;
		d = RFLOAT_VALUE(rb_to_float(from));
		d = HTOND(d,dtmp);
		rb_str_buf_cat(res, (char*)&d, sizeof(double));
	    }
	    break;

	  case 'x':		/* null byte */
	  grow:
	    while (len >= 10) {
		rb_str_buf_cat(res, nul10, 10);
		len -= 10;
	    }
	    rb_str_buf_cat(res, nul10, len);
	    break;

	  case 'X':		/* back up byte */
	  shrink:
	    plen = RSTRING_LEN(res);
	    if (plen < len)
		rb_raise(rb_eArgError, "X outside of string");
	    rb_str_set_len(res, plen - len);
	    break;

	  case '@':		/* null fill to absolute position */
	    len -= RSTRING_LEN(res);
	    if (len > 0) goto grow;
	    len = -len;
	    if (len > 0) goto shrink;
	    break;

	  case '%':
	    rb_raise(rb_eArgError, "%% is not supported");
	    break;

	  case 'U':		/* Unicode character */
	    while (len-- > 0) {
		SIGNED_VALUE l;
		char buf[8];
		int le;

		from = NEXTFROM;
		from = rb_to_int(from);
		l = NUM2LONG(from);
		if (l < 0) {
		    rb_raise(rb_eRangeError, "pack(U): value out of range");
		}
		le = rb_uv_to_utf8(buf, l);
		rb_str_buf_cat(res, (char*)buf, le);
	    }
	    break;

	  case 'u':		/* uuencoded string */
	  case 'm':		/* base64 encoded string */
	    from = NEXTFROM;
	    StringValue(from);
	    ptr = RSTRING_PTR(from);
	    plen = RSTRING_LEN(from);

	    if (len == 0 && type == 'm') {
		encodes(res, ptr, plen, type, 0);
		ptr += plen;
		break;
	    }
	    if (len <= 2)
		len = 45;
	    else if (len > 63 && type == 'u')
		len = 63;
	    else
		len = len / 3 * 3;
	    while (plen > 0) {
		long todo;

		if (plen > len)
		    todo = len;
		else
		    todo = plen;
		encodes(res, ptr, todo, type, 1);
		plen -= todo;
		ptr += todo;
	    }
	    break;

	  case 'M':		/* quoted-printable encoded string */
	    from = rb_obj_as_string(NEXTFROM);
	    if (len <= 1)
		len = 72;
	    qpencode(res, from, len);
	    break;

	  case 'P':		/* pointer to packed byte string */
	    from = THISFROM;
	    if (!NIL_P(from)) {
		StringValue(from);
		if (RSTRING_LEN(from) < len) {
		    rb_raise(rb_eArgError, "too short buffer for P(%ld for %ld)",
			     RSTRING_LEN(from), len);
		}
	    }
	    len = 1;
	    /* FALL THROUGH */
	  case 'p':		/* pointer to string */
	    while (len-- > 0) {
		char *t;
		from = NEXTFROM;
		if (NIL_P(from)) {
		    t = 0;
		}
		else {
		    t = StringValuePtr(from);
		}
		if (!associates) {
		    associates = rb_ary_new();
		}
		rb_ary_push(associates, from);
		rb_obj_taint(from);
		rb_str_buf_cat(res, (char*)&t, sizeof(char*));
	    }
	    break;

	  case 'w':		/* BER compressed integer  */
	    while (len-- > 0) {
		unsigned long ul;
		VALUE buf = rb_str_new(0, 0);
		char c, *bufs, *bufe;

		from = NEXTFROM;
		if (RB_TYPE_P(from, T_BIGNUM)) {
		    VALUE big128 = rb_uint2big(128);
		    while (RB_TYPE_P(from, T_BIGNUM)) {
			from = rb_big_divmod(from, big128);
			c = castchar(NUM2INT(RARRAY_PTR(from)[1]) | 0x80); /* mod */
			rb_str_buf_cat(buf, &c, sizeof(char));
			from = RARRAY_PTR(from)[0]; /* div */
		    }
		}

		{
		    long l = NUM2LONG(from);
		    if (l < 0) {
			rb_raise(rb_eArgError, "can't compress negative numbers");
		    }
		    ul = l;
		}

		while (ul) {
		    c = castchar((ul & 0x7f) | 0x80);
		    rb_str_buf_cat(buf, &c, sizeof(char));
		    ul >>=  7;
		}

		if (RSTRING_LEN(buf)) {
		    bufs = RSTRING_PTR(buf);
		    bufe = bufs + RSTRING_LEN(buf) - 1;
		    *bufs &= 0x7f; /* clear continue bit */
		    while (bufs < bufe) { /* reverse */
			c = *bufs;
			*bufs++ = *bufe;
			*bufe-- = c;
		    }
		    rb_str_buf_cat(res, RSTRING_PTR(buf), RSTRING_LEN(buf));
		}
		else {
		    c = 0;
		    rb_str_buf_cat(res, &c, sizeof(char));
		}
	    }
	    break;

	  default:
	    rb_warning("unknown pack directive '%c' in '%s'",
		type, RSTRING_PTR(fmt));
	    break;
	}
    }

    if (associates) {
	rb_str_associate(res, associates);
    }
    OBJ_INFECT(res, fmt);
    switch (enc_info) {
      case 1:
	ENCODING_CODERANGE_SET(res, rb_usascii_encindex(), ENC_CODERANGE_7BIT);
	break;
      case 2:
	rb_enc_set_index(res, rb_utf8_encindex());
	break;
      default:
	/* do nothing, keep ASCII-8BIT */
	break;
    }
    return res;
}

#permutation {|p| ... } ⇒ Object #permutationEnumerator #permutation(n) {|p| ... } ⇒ Object #permutation(n) ⇒ Enumerator

When invoked with a block, yield all permutations of length n of the elements of the array, then return the array itself.

If n is not specified, yield all permutations of all elements.

The implementation makes no guarantees about the order in which the permutations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3]
a.permutation.to_a    #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(1).to_a #=> [[1],[2],[3]]
a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(0).to_a #=> [[]] # one permutation of length 0
a.permutation(4).to_a #=> []   # no permutations of length 4

Overloads:


4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
# File 'array.c', line 4649

static VALUE
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
{
    VALUE num;
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size);   /* Return enumerator if no block */
    rb_scan_args(argc, argv, "01", &num);
    r = NIL_P(num) ? n : NUM2LONG(num);   /* Permutation size from argument */

    if (r < 0 || n < r) {
	/* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
	rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
	for (i = 0; i < RARRAY_LEN(ary); i++) {
	    rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
	}
    }
    else {             /* this is the general case */
	volatile VALUE t0 = tmpbuf(n,sizeof(long));
	long *p = (long*)RSTRING_PTR(t0);
	volatile VALUE t1 = tmpbuf(n,sizeof(char));
	char *used = (char*)RSTRING_PTR(t1);
	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
	RBASIC(ary0)->klass = 0;

	MEMZERO(used, char, n); /* initialize array */

	permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
	tmpbuf_discard(t0);
	tmpbuf_discard(t1);
	RBASIC(ary0)->klass = rb_cArray;
    }
    return ary;
}

#popObject? #pop(n) ⇒ Object

Removes the last element from self and returns it, or nil if the array is empty.

If a number n is given, returns an array of the last n elements (or less) just like array.slice!(-n, n) does. See also Array#push for the opposite effect.

a = [ "a", "b", "c", "d" ]
a.pop     #=> "d"
a.pop(2)  #=> ["b", "c"]
a         #=> ["a"]

Overloads:


914
915
916
917
918
919
920
921
922
923
924
925
926
927
# File 'array.c', line 914

static VALUE
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;

    if (argc == 0) {
	return rb_ary_pop(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
    ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
    return result;
}

#product(other_ary, ...) ⇒ Object #product(other_ary, ...) {|p| ... } ⇒ Object

Returns an array of all combinations of elements from all arrays.

The length of the returned array is the product of the length of self and the argument arrays.

If given a block, #product will yield all combinations and return self instead.

[1,2,3].product([4,5])     #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
[1,2].product([1,2])       #=> [[1,1],[1,2],[2,1],[2,2]]
[1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
                           #     [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
[1,2].product()            #=> [[1],[2]]
[1,2].product([])          #=> []

Overloads:

  • #product(other_ary, ...) {|p| ... } ⇒ Object

    Yields:

    • (p)

4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
# File 'array.c', line 4999

static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
    int n = argc+1;    /* How many arrays we're operating on */
    volatile VALUE t0 = tmpary(n);
    volatile VALUE t1 = tmpbuf(n, sizeof(int));
    VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
    int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
    VALUE result = Qnil;      /* The array we'll be returning, when no block given */
    long i,j;
    long resultlen = 1;

    RBASIC(t0)->klass = 0;
    RBASIC(t1)->klass = 0;

    /* initialize the arrays of arrays */
    ARY_SET_LEN(t0, n);
    arrays[0] = ary;
    for (i = 1; i < n; i++) arrays[i] = Qnil;
    for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);

    /* initialize the counters for the arrays */
    for (i = 0; i < n; i++) counters[i] = 0;

    /* Otherwise, allocate and fill in an array of results */
    if (rb_block_given_p()) {
	/* Make defensive copies of arrays; exit if any is empty */
	for (i = 0; i < n; i++) {
	    if (RARRAY_LEN(arrays[i]) == 0) goto done;
	    arrays[i] = ary_make_shared_copy(arrays[i]);
	}
    }
    else {
	/* Compute the length of the result array; return [] if any is empty */
	for (i = 0; i < n; i++) {
	    long k = RARRAY_LEN(arrays[i]), l = resultlen;
	    if (k == 0) {
		result = rb_ary_new2(0);
		goto done;
	    }
	    resultlen *= k;
	    if (resultlen < k || resultlen < l || resultlen / k != l) {
		rb_raise(rb_eRangeError, "too big to product");
	    }
	}
	result = rb_ary_new2(resultlen);
    }
    for (;;) {
	int m;
	/* fill in one subarray */
	VALUE subarray = rb_ary_new2(n);
	for (j = 0; j < n; j++) {
	    rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
	}

	/* put it on the result array */
	if (NIL_P(result)) {
	    FL_SET(t0, FL_USER5);
	    rb_yield(subarray);
	    if (! FL_TEST(t0, FL_USER5)) {
		rb_raise(rb_eRuntimeError, "product reentered");
	    }
	    else {
		FL_UNSET(t0, FL_USER5);
	    }
	}
	else {
	    rb_ary_push(result, subarray);
	}

	/*
	 * Increment the last counter.  If it overflows, reset to 0
	 * and increment the one before it.
	 */
	m = n-1;
	counters[m]++;
	while (counters[m] == RARRAY_LEN(arrays[m])) {
	    counters[m] = 0;
	    /* If the first counter overflows, we are done */
	    if (--m < 0) goto done;
	    counters[m]++;
	}
    }
done:
    tmpary_discard(t0);
    tmpbuf_discard(t1);

    return NIL_P(result) ? ary : result;
}

#push(obj, ...) ⇒ Object

Append --- Pushes the given object(s) on to the end of this array. This expression returns the array itself, so several appends may be chained together. See also Array#pop for the opposite effect.

a = [ "a", "b", "c" ]
a.push("d", "e", "f")
        #=> ["a", "b", "c", "d", "e", "f"]
[1, 2, 3,].push(4).push(5)
        #=> [1, 2, 3, 4, 5]

873
874
875
876
877
# File 'array.c', line 873

static VALUE
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
{
    return rb_ary_cat(ary, argv, argc);
}

#rassoc(obj) ⇒ nil

Searches through the array whose elements are also arrays.

Compares obj with the second element of each contained array using obj.==.

Returns the first contained array that matches obj.

See also Array#assoc.

a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
a.rassoc("two")    #=> [2, "two"]
a.rassoc("four")   #=> nil

Returns:

  • (nil)

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
# File 'array.c', line 3510

VALUE
rb_ary_rassoc(VALUE ary, VALUE value)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
	v = RARRAY_PTR(ary)[i];
	if (RB_TYPE_P(v, T_ARRAY) &&
	    RARRAY_LEN(v) > 1 &&
	    rb_equal(RARRAY_PTR(v)[1], value))
	    return v;
    }
    return Qnil;
}

#reject {|item| ... } ⇒ Object #rejectEnumerator

Returns a new array containing the items in self for which the given block is not true.

See also Array#delete_if

If no block is given, an Enumerator is returned instead.

Overloads:


2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
# File 'array.c', line 2997

static VALUE
rb_ary_reject(VALUE ary)
{
    VALUE rejected_ary;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    rejected_ary = rb_ary_new();
    ary_reject(ary, rejected_ary);
    return rejected_ary;
}

#reject! {|item| ... } ⇒ nil #reject!Enumerator

Equivalent to Array#delete_if, deleting elements from self for which the block evaluates to true, but returns nil if no changes were made.

The array is changed instantly every time the block is called, not after the iteration is over.

See also Enumerable#reject and Array#delete_if.

If no block is given, an Enumerator is returned instead.

Overloads:

  • #reject! {|item| ... } ⇒ nil

    Yields:

    • (item)

    Returns:

    • (nil)
  • #reject!Enumerator

    Returns:


2977
2978
2979
2980
2981
2982
# File 'array.c', line 2977

static VALUE
rb_ary_reject_bang(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    return ary_reject_bang(ary);
}

#repeated_combination(n) {|c| ... } ⇒ Object #repeated_combination(n) ⇒ Enumerator

When invoked with a block, yields all repeated combinations of length n of elements from the array and then returns the array itself.

The implementation makes no guarantees about the order in which the repeated combinations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3]
a.repeated_combination(1).to_a  #=> [[1], [2], [3]]
a.repeated_combination(2).to_a  #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
a.repeated_combination(3).to_a  #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
                                #    [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
a.repeated_combination(4).to_a  #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
                                #    [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
                                #    [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
a.repeated_combination(0).to_a  #=> [[]] # one combination of length 0

Overloads:


4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
# File 'array.c', line 4943

static VALUE
rb_ary_repeated_combination(VALUE ary, VALUE num)
{
    long n, i, len;

    n = NUM2LONG(num);                 /* Combination size from argument */
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size);   /* Return enumerator if no block */
    len = RARRAY_LEN(ary);
    if (n < 0) {
	/* yield nothing */
    }
    else if (n == 0) {
	rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
	for (i = 0; i < len; i++) {
	    rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
	}
    }
    else if (len == 0) {
	/* yield nothing */
    }
    else {
	volatile VALUE t0 = tmpbuf(n, sizeof(long));
	long *p = (long*)RSTRING_PTR(t0);
	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
	RBASIC(ary0)->klass = 0;

	rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */
	tmpbuf_discard(t0);
	RBASIC(ary0)->klass = rb_cArray;
    }
    return ary;
}

#repeated_permutation(n) {|p| ... } ⇒ Object #repeated_permutation(n) ⇒ Enumerator

When invoked with a block, yield all repeated permutations of length n of the elements of the array, then return the array itself.

The implementation makes no guarantees about the order in which the repeated permutations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2]
a.repeated_permutation(1).to_a  #=> [[1], [2]]
a.repeated_permutation(2).to_a  #=> [[1,1],[1,2],[2,1],[2,2]]
a.repeated_permutation(3).to_a  #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
                                #    [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
a.repeated_permutation(0).to_a  #=> [[]] # one permutation of length 0

Overloads:


4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
# File 'array.c', line 4848

static VALUE
rb_ary_repeated_permutation(VALUE ary, VALUE num)
{
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size);      /* Return Enumerator if no block */
    r = NUM2LONG(num);                    /* Permutation size from argument */

    if (r < 0) {
	/* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
	rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
	for (i = 0; i < RARRAY_LEN(ary); i++) {
	    rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
	}
    }
    else {             /* this is the general case */
	volatile VALUE t0 = tmpbuf(r, sizeof(long));
	long *p = (long*)RSTRING_PTR(t0);
	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
	RBASIC(ary0)->klass = 0;

	rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */
	tmpbuf_discard(t0);
	RBASIC(ary0)->klass = rb_cArray;
    }
    return ary;
}

#replace(other_ary) ⇒ Object

Replaces the contents of self with the contents of other_ary, truncating or expanding if necessary.

a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
a                              #=> ["x", "y", "z"]

3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
# File 'array.c', line 3168

VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
        VALUE *ptr;
        VALUE shared = 0;

        if (ARY_OWNS_HEAP_P(copy)) {
            xfree(RARRAY_PTR(copy));
        }
        else if (ARY_SHARED_P(copy)) {
            shared = ARY_SHARED(copy);
            FL_UNSET_SHARED(copy);
        }
        FL_SET_EMBED(copy);
        ptr = RARRAY_PTR(orig);
        MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig));
        if (shared) {
            rb_ary_decrement_share(shared);
        }
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
    }
    else {
        VALUE shared = ary_make_shared(orig);
        if (ARY_OWNS_HEAP_P(copy)) {
            xfree(RARRAY_PTR(copy));
        }
        else {
            rb_ary_unshare_safe(copy);
        }
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, RARRAY_PTR(orig));
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
        rb_ary_set_shared(copy, shared);
    }
    return copy;
}

#reverseObject

Returns a new array containing self's elements in reverse order.

[ "a", "b", "c" ].reverse   #=> ["c", "b", "a"]
[ 1 ].reverse               #=> [1]

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
# File 'array.c', line 2084

static VALUE
rb_ary_reverse_m(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    VALUE dup = rb_ary_new2(len);

    if (len > 0) {
	VALUE *p1 = RARRAY_PTR(ary);
	VALUE *p2 = RARRAY_PTR(dup) + len - 1;
	do *p2-- = *p1++; while (--len > 0);
    }
    ARY_SET_LEN(dup, RARRAY_LEN(ary));
    return dup;
}

#reverse!Object

Reverses self in place.

a = [ "a", "b", "c" ]
a.reverse!       #=> ["c", "b", "a"]
a                #=> ["c", "b", "a"]

2068
2069
2070
2071
2072
# File 'array.c', line 2068

static VALUE
rb_ary_reverse_bang(VALUE ary)
{
    return rb_ary_reverse(ary);
}

#reverse_each {|item| ... } ⇒ Object #reverse_eachEnumerator

Same as Array#each, but traverses self in reverse order.

a = [ "a", "b", "c" ]
a.reverse_each {|x| print x, " " }

produces:

c b a

Overloads:


1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
# File 'array.c', line 1728

static VALUE
rb_ary_reverse_each(VALUE ary)
{
    long len;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    len = RARRAY_LEN(ary);
    while (len--) {
	rb_yield(RARRAY_PTR(ary)[len]);
	if (RARRAY_LEN(ary) < len) {
	    len = RARRAY_LEN(ary);
	}
    }
    return ary;
}

#rindex(obj) ⇒ Integer? #rindex {|item| ... } ⇒ Integer? #rindexEnumerator

Returns the index of the last object in self == to obj.

If a block is given instead of an argument, returns the index of the first object for which the block returns true, starting from the last object.

Returns nil if no match is found.

See also Array#index.

If neither block nor argument is given, an Enumerator is returned instead.

a = [ "a", "b", "b", "b", "c" ]
a.rindex("b")             #=> 3
a.rindex("z")             #=> nil
a.rindex { |x| x == "b" } #=> 3

Overloads:


1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
# File 'array.c', line 1395

static VALUE
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i = RARRAY_LEN(ary);

    if (argc == 0) {
	RETURN_ENUMERATOR(ary, 0, 0);
	while (i--) {
	    if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
		return LONG2NUM(i);
	    if (i > RARRAY_LEN(ary)) {
		i = RARRAY_LEN(ary);
	    }
	}
	return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
	rb_warn("given block not used");
    while (i--) {
	if (rb_equal(RARRAY_PTR(ary)[i], val))
	    return LONG2NUM(i);
	if (i > RARRAY_LEN(ary)) {
	    i = RARRAY_LEN(ary);
	}
    }
    return Qnil;
}

#rotate(count = 1) ⇒ Object

Returns a new array by rotating self so that the element at count is the first element of the new array.

If count is negative then it rotates in the opposite direction, starting from the end of self where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.rotate         #=> ["b", "c", "d", "a"]
a                #=> ["a", "b", "c", "d"]
a.rotate(2)      #=> ["c", "d", "a", "b"]
a.rotate(-3)     #=> ["b", "c", "d", "a"]

2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
# File 'array.c', line 2174

static VALUE
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE rotated, *ptr, *ptr2;
    long len, cnt = 1;

    switch (argc) {
      case 1: cnt = NUM2LONG(argv[0]);
      case 0: break;
      default: rb_scan_args(argc, argv, "01", NULL);
    }

    len = RARRAY_LEN(ary);
    rotated = rb_ary_new2(len);
    if (len > 0) {
	cnt = rotate_count(cnt, len);
	ptr = RARRAY_PTR(ary);
	ptr2 = RARRAY_PTR(rotated);
	len -= cnt;
	MEMCPY(ptr2, ptr + cnt, VALUE, len);
	MEMCPY(ptr2 + len, ptr, VALUE, cnt);
    }
    ARY_SET_LEN(rotated, RARRAY_LEN(ary));
    return rotated;
}

#rotate!(count = 1) ⇒ Object

Rotates self in place so that the element at count comes first, and returns self.

If count is negative then it rotates in the opposite direction, starting from the end of the array where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.rotate!        #=> ["b", "c", "d", "a"]
a                #=> ["b", "c", "d", "a"]
a.rotate!(2)     #=> ["d", "a", "b", "c"]
a.rotate!(-3)    #=> ["a", "b", "c", "d"]

2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
# File 'array.c', line 2143

static VALUE
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
{
    long n = 1;

    switch (argc) {
      case 1: n = NUM2LONG(argv[0]);
      case 0: break;
      default: rb_scan_args(argc, argv, "01", NULL);
    }
    rb_ary_rotate(ary, n);
    return ary;
}

#sampleObject #sample(random:rng) ⇒ Object #sample(n) ⇒ Object #sample(n, random:rng) ⇒ Object

Choose a random element or n random elements from the array.

The elements are chosen by using random and unique indices into the array in order to ensure that an element doesn't repeat itself unless the array already contained duplicate elements.

If the array is empty the first form returns nil and the second form returns an empty array.

The optional rng argument will be used as the random number generator.

a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
a.sample         #=> 7
a.sample(4)      #=> [6, 4, 2, 5]

Overloads:


4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
# File 'array.c', line 4368

static VALUE
rb_ary_sample(int argc, VALUE *argv, VALUE ary)
{
    VALUE nv, result, *ptr;
    VALUE opts, randgen = rb_cRandom;
    long n, len, i, j, k, idx[10];
    long rnds[numberof(idx)];

    if (OPTHASH_GIVEN_P(opts)) {
	randgen = rb_hash_lookup2(opts, sym_random, randgen);
    }
    ptr = RARRAY_PTR(ary);
    len = RARRAY_LEN(ary);
    if (argc == 0) {
	if (len == 0) return Qnil;
	if (len == 1) {
	    i = 0;
	}
	else {
	    i = RAND_UPTO(len);
	    if ((len = RARRAY_LEN(ary)) <= i) return Qnil;
	    ptr = RARRAY_PTR(ary);
	}
	return ptr[i];
    }
    rb_scan_args(argc, argv, "1", &nv);
    n = NUM2LONG(nv);
    if (n < 0) rb_raise(rb_eArgError, "negative sample number");
    if (n > len) n = len;
    if (n <= numberof(idx)) {
	for (i = 0; i < n; ++i) {
	    rnds[i] = RAND_UPTO(len - i);
	}
    }
    k = len;
    len = RARRAY_LEN(ary);
    ptr = RARRAY_PTR(ary);
    if (len < k) {
	if (n <= numberof(idx)) {
	    for (i = 0; i < n; ++i) {
		if (rnds[i] >= len) {
		    return rb_ary_new2(0);
		}
	    }
	}
    }
    if (n > len) n = len;
    switch (n) {
      case 0:
	return rb_ary_new2(0);
      case 1:
	i = rnds[0];
	return rb_ary_new4(1, &ptr[i]);
      case 2:
	i = rnds[0];
	j = rnds[1];
	if (j >= i) j++;
	return rb_ary_new3(2, ptr[i], ptr[j]);
      case 3:
	i = rnds[0];
	j = rnds[1];
	k = rnds[2];
	{
	    long l = j, g = i;
	    if (j >= i) l = i, g = ++j;
	    if (k >= l && (++k >= g)) ++k;
	}
	return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]);
    }
    if (n <= numberof(idx)) {
	VALUE *ptr_result;
	long sorted[numberof(idx)];
	sorted[0] = idx[0] = rnds[0];
	for (i=1; i<n; i++) {
	    k = rnds[i];
	    for (j = 0; j < i; ++j) {
		if (k < sorted[j]) break;
		++k;
	    }
	    memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
	    sorted[j] = idx[i] = k;
	}
	result = rb_ary_new2(n);
	ptr_result = RARRAY_PTR(result);
	for (i=0; i<n; i++) {
	    ptr_result[i] = ptr[idx[i]];
	}
    }
    else {
	VALUE *ptr_result;
	result = rb_ary_new4(len, ptr);
	RBASIC(result)->klass = 0;
	ptr_result = RARRAY_PTR(result);
	RB_GC_GUARD(ary);
	for (i=0; i<n; i++) {
	    j = RAND_UPTO(len-i) + i;
	    nv = ptr_result[j];
	    ptr_result[j] = ptr_result[i];
	    ptr_result[i] = nv;
	}
	RBASIC(result)->klass = rb_cArray;
    }
    ARY_SET_LEN(result, n);

    return result;
}

#select {|item| ... } ⇒ Object #selectEnumerator

Returns a new array containing all elements of ary for which the given block returns a true value.

If no block is given, an Enumerator is returned instead.

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

a = %w{ a b c d e f }
a.select { |v| v =~ /[aeiou]/ }  #=> ["a", "e"]

See also Enumerable#select.

Overloads:


2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
# File 'array.c', line 2649

static VALUE
rb_ary_select(VALUE ary)
{
    VALUE result;
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    result = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
	    rb_ary_push(result, rb_ary_elt(ary, i));
	}
    }
    return result;
}

#select! {|item| ... } ⇒ nil #select!Enumerator

Invokes the given block passing in successive elements from self, deleting elements for which the block returns a false value.

If changes were made, it will return self, otherwise it returns nil.

See also Array#keep_if

If no block is given, an Enumerator is returned instead.

Overloads:

  • #select! {|item| ... } ⇒ nil

    Yields:

    • (item)

    Returns:

    • (nil)
  • #select!Enumerator

    Returns:


2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
# File 'array.c', line 2681

static VALUE
rb_ary_select_bang(VALUE ary)
{
    long i1, i2;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    rb_ary_modify(ary);
    for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
	VALUE v = RARRAY_PTR(ary)[i1];
	if (!RTEST(rb_yield(v))) continue;
	if (i1 != i2) {
	    rb_ary_store(ary, i2, v);
	}
	i2++;
    }

    if (RARRAY_LEN(ary) == i2) return Qnil;
    if (i2 < RARRAY_LEN(ary))
	ARY_SET_LEN(ary, i2);
    return ary;
}

#shiftObject? #shift(n) ⇒ Object

Removes the first element of self and returns it (shifting all other elements down by one). Returns nil if the array is empty.

If a number n is given, returns an array of the first n elements (or less) just like array.slice!(0, n) does. With ary containing only the remainder elements, not including what was shifted to new_ary. See also Array#unshift for the opposite effect.

args = [ "-m", "-q", "filename" ]
args.shift     #=> "-m"
args           #=> ["-q", "filename"]

args = [ "-m", "-q", "filename" ]
args.shift(2)  #=> ["-m", "-q"]
args           #=> ["filename"]

Overloads:


980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
# File 'array.c', line 980

static VALUE
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;
    long n;

    if (argc == 0) {
	return rb_ary_shift(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
    n = RARRAY_LEN(result);
    if (ARY_SHARED_P(ary)) {
	if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
	    rb_mem_clear(RARRAY_PTR(ary), n);
	}
        ARY_INCREASE_PTR(ary, n);
    }
    else {
	MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
    }
    ARY_INCREASE_LEN(ary, -n);

    return result;
}

#shuffleObject #shuffle(random:rng) ⇒ Object

Returns a new array with elements of self shuffled.

a = [ 1, 2, 3 ]           #=> [1, 2, 3]
a.shuffle                 #=> [2, 3, 1]

The optional rng argument will be used as the random number generator.

a.shuffle(random: Random.new(1))  #=> [1, 3, 2]

4335
4336
4337
4338
4339
4340
4341
# File 'array.c', line 4335

static VALUE
rb_ary_shuffle(int argc, VALUE *argv, VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_shuffle_bang(argc, argv, ary);
    return ary;
}

#shuffle!Object #shuffle!(random:rng) ⇒ Object

Shuffles elements in self in place.

The optional rng argument will be used as the random number generator.


4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
# File 'array.c', line 4291

static VALUE
rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary)
{
    VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom;
    long i, snap_len;

    if (OPTHASH_GIVEN_P(opts)) {
	randgen = rb_hash_lookup2(opts, sym_random, randgen);
    }
    rb_check_arity(argc, 0, 0);
    rb_ary_modify(ary);
    i = RARRAY_LEN(ary);
    ptr = RARRAY_PTR(ary);
    snap_len = i;
    snap_ptr = ptr;
    while (i) {
	long j = RAND_UPTO(i);
	VALUE tmp;
	if (snap_len != RARRAY_LEN(ary) || snap_ptr != RARRAY_PTR(ary)) {
	    rb_raise(rb_eRuntimeError, "modified during shuffle");
	}
	tmp = ptr[--i];
	ptr[i] = ptr[j];
	ptr[j] = tmp;
    }
    return ary;
}

#[](index) ⇒ Object? #[](start, length) ⇒ nil #[](range) ⇒ nil #slice(index) ⇒ Object? #slice(start, length) ⇒ nil #slice(range) ⇒ nil

Element Reference --- Returns the element at index, or returns a subarray starting at the start index and continuing for length elements, or returns a subarray specified by range of indices.

Negative indices count backward from the end of the array (-1 is the last element). For start and range cases the starting index is just before an element. Additionally, an empty array is returned when the starting index for an element range is at the end of the array.

Returns nil if the index (or starting index) are out of range.

a = [ "a", "b", "c", "d", "e" ]
a[2] +  a[0] + a[1]    #=> "cab"
a[6]                   #=> nil
a[1, 2]                #=> [ "b", "c" ]
a[1..3]                #=> [ "b", "c", "d" ]
a[4..7]                #=> [ "e" ]
a[6..10]               #=> nil
a[-3, 3]               #=> [ "c", "d", "e" ]
# special cases
a[5]                   #=> nil
a[6, 1]                #=> nil
a[5, 1]                #=> []
a[5..10]               #=> []

Overloads:

  • #[](index) ⇒ Object?

    Returns:

  • #[](start, length) ⇒ nil

    Returns:

    • (nil)
  • #[](range) ⇒ nil

    Returns:

    • (nil)
  • #slice(index) ⇒ Object?

    Returns:

  • #slice(start, length) ⇒ nil

    Returns:

    • (nil)
  • #slice(range) ⇒ nil

    Returns:

    • (nil)

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
# File 'array.c', line 1163

VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg;
    long beg, len;

    if (argc == 2) {
	beg = NUM2LONG(argv[0]);
	len = NUM2LONG(argv[1]);
	if (beg < 0) {
	    beg += RARRAY_LEN(ary);
	}
	return rb_ary_subseq(ary, beg, len);
    }
    if (argc != 1) {
	rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    arg = argv[0];
    /* special case - speeding up */
    if (FIXNUM_P(arg)) {
	return rb_ary_entry(ary, FIX2LONG(arg));
    }
    /* check if idx is Range */
    switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
      case Qfalse:
	break;
      case Qnil:
	return Qnil;
      default:
	return rb_ary_subseq(ary, beg, len);
    }
    return rb_ary_entry(ary, NUM2LONG(arg));
}

#slice!(index) ⇒ Object? #slice!(start, length) ⇒ nil #slice!(range) ⇒ nil

Deletes the element(s) given by an index (optionally up to length elements) or by a range.

Returns the deleted object (or objects), or nil if the index is out of range.

a = [ "a", "b", "c" ]
a.slice!(1)     #=> "b"
a               #=> ["a", "c"]
a.slice!(-1)    #=> "c"
a               #=> ["a"]
a.slice!(100)   #=> nil
a               #=> ["a"]

Overloads:

  • #slice!(index) ⇒ Object?

    Returns:

  • #slice!(start, length) ⇒ nil

    Returns:

    • (nil)
  • #slice!(range) ⇒ nil

    Returns:

    • (nil)

2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
# File 'array.c', line 2876

static VALUE
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg1, arg2;
    long pos, len, orig_len;

    rb_ary_modify_check(ary);
    if (argc == 2) {
	pos = NUM2LONG(argv[0]);
	len = NUM2LONG(argv[1]);
      delete_pos_len:
	if (len < 0) return Qnil;
	orig_len = RARRAY_LEN(ary);
	if (pos < 0) {
	    pos += orig_len;
	    if (pos < 0) return Qnil;
	}
	else if (orig_len < pos) return Qnil;
	if (orig_len < pos + len) {
	    len = orig_len - pos;
	}
	if (len == 0) return rb_ary_new2(0);
	arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos);
	RBASIC(arg2)->klass = rb_obj_class(ary);
	rb_ary_splice(ary, pos, len, Qundef);
	return arg2;
    }

    if (argc != 1) {
	/* error report */
	rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    arg1 = argv[0];

    if (!FIXNUM_P(arg1)) {
	switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
	  case Qtrue:
	    /* valid range */
	    goto delete_pos_len;
	  case Qnil:
	    /* invalid range */
	    return Qnil;
	  default:
	    /* not a range */
	    break;
	}
    }

    return rb_ary_delete_at(ary, NUM2LONG(arg1));
}

#sortObject #sort {|a, b| ... } ⇒ Object

Returns a new array created by sorting self.

Comparisons for the sort will be done using the <=> operator or using an optional code block.

The block must implement a comparison between a and b, and return -1, when a follows b, 0 when a and b are equivalent, or +1 if b follows a.

See also Enumerable#sort_by.

a = [ "d", "a", "e", "c", "b" ]
a.sort                    #=> ["a", "b", "c", "d", "e"]
a.sort { |x,y| y <=> x }  #=> ["e", "d", "c", "b", "a"]

Overloads:

  • #sort {|a, b| ... } ⇒ Object

    Yields:

    • (a, b)

2373
2374
2375
2376
2377
2378
2379
# File 'array.c', line 2373

VALUE
rb_ary_sort(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_sort_bang(ary);
    return ary;
}

#sort!Object #sort! {|a, b| ... } ⇒ Object

Sorts self in place.

Comparisons for the sort will be done using the <=> operator or using an optional code block.

The block must implement a comparison between a and b, and return -1, when a follows b, 0 when a and b are equivalent, or +1 if b follows a.

See also Enumerable#sort_by.

a = [ "d", "a", "e", "c", "b" ]
a.sort!                    #=> ["a", "b", "c", "d", "e"]
a.sort! { |x,y| y <=> x }  #=> ["e", "d", "c", "b", "a"]

Overloads:

  • #sort! {|a, b| ... } ⇒ Object

    Yields:

    • (a, b)

2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
# File 'array.c', line 2290

VALUE
rb_ary_sort_bang(VALUE ary)
{
    rb_ary_modify(ary);
    assert(!ARY_SHARED_P(ary));
    if (RARRAY_LEN(ary) > 1) {
	VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
	struct ary_sort_data data;
	long len = RARRAY_LEN(ary);

	RBASIC(tmp)->klass = 0;
	data.ary = tmp;
	data.opt_methods = 0;
	data.opt_inited = 0;
	ruby_qsort(RARRAY_PTR(tmp), len, sizeof(VALUE),
		   rb_block_given_p()?sort_1:sort_2, &data);

        if (ARY_EMBED_P(tmp)) {
            assert(ARY_EMBED_P(tmp));
            if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
                rb_ary_unshare(ary);
            }
            FL_SET_EMBED(ary);
            MEMCPY(RARRAY_PTR(ary), ARY_EMBED_PTR(tmp), VALUE, ARY_EMBED_LEN(tmp));
            ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
        }
        else {
            assert(!ARY_EMBED_P(tmp));
            if (ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
                assert(!ARY_EMBED_P(ary));
                FL_UNSET_SHARED(ary);
                ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
            }
            else {
                assert(!ARY_SHARED_P(tmp));
                if (ARY_EMBED_P(ary)) {
                    FL_UNSET_EMBED(ary);
                }
                else if (ARY_SHARED_P(ary)) {
                    /* ary might be destructively operated in the given block */
                    rb_ary_unshare(ary);
                }
                else {
                    xfree(ARY_HEAP_PTR(ary));
                }
                ARY_SET_PTR(ary, RARRAY_PTR(tmp));
                ARY_SET_HEAP_LEN(ary, len);
                ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
            }
            /* tmp was lost ownership for the ptr */
            FL_UNSET(tmp, FL_FREEZE);
            FL_SET_EMBED(tmp);
            ARY_SET_EMBED_LEN(tmp, 0);
            FL_SET(tmp, FL_FREEZE);
	}
        /* tmp will be GC'ed. */
        RBASIC(tmp)->klass = rb_cArray;
    }
    return ary;
}

#sort_by! {|obj| ... } ⇒ Object #sort_by!Enumerator

Sorts self in place using a set of keys generated by mapping the values in self through the given block.

If no block is given, an Enumerator is returned instead.

Overloads:


2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
# File 'array.c', line 2500

static VALUE
rb_ary_sort_by_bang(VALUE ary)
{
    VALUE sorted;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length);
    rb_ary_modify(ary);
    sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
    rb_ary_replace(ary, sorted);
    return ary;
}

#take(n) ⇒ Object

Returns first n elements from the array.

If a negative number is given, raises an ArgumentError.

See also Array#drop

a = [1, 2, 3, 4, 5, 0]
a.take(3)             #=> [1, 2, 3]

5104
5105
5106
5107
5108
5109
5110
5111
5112
# File 'array.c', line 5104

static VALUE
rb_ary_take(VALUE obj, VALUE n)
{
    long len = NUM2LONG(n);
    if (len < 0) {
	rb_raise(rb_eArgError, "attempt to take negative size");
    }
    return rb_ary_subseq(obj, 0, len);
}

#take_while {|arr| ... } ⇒ Object #take_whileEnumerator

Passes elements to the block until the block returns nil or false, then stops iterating and returns an array of all prior elements.

If no block is given, an Enumerator is returned instead.

See also Array#drop_while

a = [1, 2, 3, 4, 5, 0]
a.take_while { |i| i < 3 }  #=> [1, 2]

Overloads:


5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
# File 'array.c', line 5131

static VALUE
rb_ary_take_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
    }
    return rb_ary_take(ary, LONG2FIX(i));
}

#to_aObject

Returns self.

If called on a subclass of Array, converts the receiver to an Array object.


2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
# File 'array.c', line 2009

static VALUE
rb_ary_to_a(VALUE ary)
{
    if (rb_obj_class(ary) != rb_cArray) {
	VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
	rb_ary_replace(dup, ary);
	return dup;
    }
    return ary;
}

#to_aryObject

Returns self.


2027
2028
2029
2030
2031
# File 'array.c', line 2027

static VALUE
rb_ary_to_ary_m(VALUE ary)
{
    return ary;
}

#transposeObject

Assumes that self is an array of arrays and transposes the rows and columns.

a = [[1,2], [3,4], [5,6]]
a.transpose   #=> [[1, 3, 5], [2, 4, 6]]

If the length of the subarrays don't match, an IndexError is raised.


3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
# File 'array.c', line 3128

static VALUE
rb_ary_transpose(VALUE ary)
{
    long elen = -1, alen, i, j;
    VALUE tmp, result = 0;

    alen = RARRAY_LEN(ary);
    if (alen == 0) return rb_ary_dup(ary);
    for (i=0; i<alen; i++) {
	tmp = to_ary(rb_ary_elt(ary, i));
	if (elen < 0) {		/* first element */
	    elen = RARRAY_LEN(tmp);
	    result = rb_ary_new2(elen);
	    for (j=0; j<elen; j++) {
		rb_ary_store(result, j, rb_ary_new2(alen));
	    }
	}
	else if (elen != RARRAY_LEN(tmp)) {
	    rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
		     RARRAY_LEN(tmp), elen);
	}
	for (j=0; j<elen; j++) {
	    rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
	}
    }
    return result;
}

#uniqObject #uniq {|item| ... } ⇒ Object

Returns a new array by removing duplicate values in self.

If a block is given, it will use the return value of the block for comparison.

It compares values using their #hash and #eql? methods for efficiency.

a = [ "a", "a", "b", "b", "c" ]
a.uniq   # => ["a", "b", "c"]

b = [["student","sam"], ["student","george"], ["teacher","matz"]]
b.uniq { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]

Overloads:

  • #uniq {|item| ... } ⇒ Object

    Yields:

    • (item)

4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
# File 'array.c', line 4005

static VALUE
rb_ary_uniq(VALUE ary)
{
    VALUE hash, uniq, v;
    long i;

    if (RARRAY_LEN(ary) <= 1)
        return rb_ary_dup(ary);
    if (rb_block_given_p()) {
	hash = ary_make_hash_by(ary);
	uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
	st_foreach(RHASH_TBL(hash), push_value, uniq);
    }
    else {
	hash = ary_make_hash(ary);
	uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
	for (i=0; i<RARRAY_LEN(ary); i++) {
	    st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
	    if (st_delete(RHASH_TBL(hash), &vv, 0)) {
		rb_ary_push(uniq, v);
	    }
	}
    }
    ary_recycle_hash(hash);

    return uniq;
}

#uniq!nil #uniq! {|item| ... } ⇒ nil

Removes duplicate elements from self.

If a block is given, it will use the return value of the block for comparison.

It compares values using their #hash and #eql? methods for efficiency.

Returns nil if no changes are made (that is, no duplicates are found).

a = [ "a", "a", "b", "b", "c" ]
a.uniq!   # => ["a", "b", "c"]

b = [ "a", "b", "c" ]
b.uniq!   # => nil

c = [["student","sam"], ["student","george"], ["teacher","matz"]]
c.uniq! { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]

Overloads:

  • #uniq!nil

    Returns:

    • (nil)
  • #uniq! {|item| ... } ⇒ nil

    Yields:

    • (item)

    Returns:

    • (nil)

3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
# File 'array.c', line 3946

static VALUE
rb_ary_uniq_bang(VALUE ary)
{
    VALUE hash, v;
    long i, j;

    rb_ary_modify_check(ary);
    if (RARRAY_LEN(ary) <= 1)
        return Qnil;
    if (rb_block_given_p()) {
	hash = ary_make_hash_by(ary);
	if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) {
	    return Qnil;
	}
	ARY_SET_LEN(ary, 0);
	if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
	    rb_ary_unshare(ary);
	    FL_SET_EMBED(ary);
	}
	ary_resize_capa(ary, i);
	st_foreach(RHASH_TBL(hash), push_value, ary);
    }
    else {
	hash = ary_make_hash(ary);
	if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) {
	    return Qnil;
	}
	for (i=j=0; i<RARRAY_LEN(ary); i++) {
	    st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
	    if (st_delete(RHASH_TBL(hash), &vv, 0)) {
		rb_ary_store(ary, j++, v);
	    }
	}
	ARY_SET_LEN(ary, j);
    }
    ary_recycle_hash(hash);

    return ary;
}

#unshift(obj, ...) ⇒ Object

Prepends objects to the front of self, moving other elements upwards. See also Array#shift for the opposite effect.

a = [ "b", "c", "d" ]
a.unshift("a")   #=> ["a", "b", "c", "d"]
a.unshift(1, 2)  #=> [ 1, 2, "a", "b", "c", "d"]

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
# File 'array.c', line 1068

static VALUE
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
{
    long len = RARRAY_LEN(ary);

    if (argc == 0) {
	rb_ary_modify_check(ary);
	return ary;
    }

    ary_ensure_room_for_unshift(ary, argc);
    MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
    ARY_SET_LEN(ary, len + argc);
    return ary;
}

#values_at(selector, ...) ⇒ Object

Returns an array containing the elements in self corresponding to the given selector(s).

The selectors may be either integer indices or ranges.

See also Array#select.

a = %w{ a b c d e f }
a.values_at(1, 3, 5)          # => ["b", "d", "f"]
a.values_at(1, 3, 5, 7)       # => ["b", "d", "f", nil]
a.values_at(-1, -2, -2, -7)   # => ["f", "e", "e", nil]
a.values_at(4..6, 3...6)      # => ["e", "f", nil, "d", "e", "f"]

2624
2625
2626
2627
2628
# File 'array.c', line 2624

static VALUE
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
{
    return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
}

#zip(arg, ...) ⇒ Object #zip(arg, ...) {|arr| ... } ⇒ nil

Converts any arguments to arrays, then merges elements of self with corresponding elements from each argument.

This generates a sequence of ary.size n-element arrays, where n is one more that the count of arguments.

If the size of any argument is less than the size of the initial array, nil values are supplied.

If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.

a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]
[1, 2, 3].zip(a, b)   #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1, 2], [8])    #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]

Overloads:

  • #zip(arg, ...) {|arr| ... } ⇒ nil

    Yields:

    • (arr)

    Returns:

    • (nil)

3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
# File 'array.c', line 3083

static VALUE
rb_ary_zip(int argc, VALUE *argv, VALUE ary)
{
    int i, j;
    long len;
    VALUE result = Qnil;

    len = RARRAY_LEN(ary);
    for (i=0; i<argc; i++) {
	argv[i] = take_items(argv[i], len);
    }
    if (!rb_block_given_p()) {
	result = rb_ary_new2(len);
    }

    for (i=0; i<RARRAY_LEN(ary); i++) {
	VALUE tmp = rb_ary_new2(argc+1);

	rb_ary_push(tmp, rb_ary_elt(ary, i));
	for (j=0; j<argc; j++) {
	    rb_ary_push(tmp, rb_ary_elt(argv[j], i));
	}
	if (NIL_P(result)) {
	    rb_yield(tmp);
	}
	else {
	    rb_ary_push(result, tmp);
	}
    }
    return result;
}

#|(other_ary) ⇒ Object

Set Union --- Returns a new array by joining ary with other_ary, excluding any duplicates.

It compares elements using their #hash and #eql? methods for efficiency.

[ "a", "b", "c" ] | [ "c", "d", "a" ]    #=> [ "a", "b", "c", "d" ]

See also Array#uniq.


3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
# File 'array.c', line 3887

static VALUE
rb_ary_or(VALUE ary1, VALUE ary2)
{
    VALUE hash, ary3, v;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
    hash = ary_add_hash(ary_make_hash(ary1), ary2);

    for (i=0; i<RARRAY_LEN(ary1); i++) {
	vv = (st_data_t)(v = rb_ary_elt(ary1, i));
	if (st_delete(RHASH_TBL(hash), &vv, 0)) {
	    rb_ary_push(ary3, v);
	}
    }
    for (i=0; i<RARRAY_LEN(ary2); i++) {
	vv = (st_data_t)(v = rb_ary_elt(ary2, i));
	if (st_delete(RHASH_TBL(hash), &vv, 0)) {
	    rb_ary_push(ary3, v);
	}
    }
    ary_recycle_hash(hash);
    return ary3;
}