Class: BigDecimal

Inherits:
Numeric
  • Object
show all
Defined in:
bigdecimal.c,
lib/bigdecimal/util.rb,
bigdecimal.c

Overview

BigDecimal provides arbitrary-precision floating point decimal arithmetic.

Copyright (C) 2002 by Shigeo Kobayashi <[email protected]>.

You may distribute under the terms of either the GNU General Public License or the Artistic License, as specified in the README file of the BigDecimal distribution.

Documented by mathew <[email protected]>.

Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

42**13 #=> 1265437718438866624512

BigDecimal provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

sum = 0
for i in (1..10000)
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062

and contrast with the output from:

require 'bigdecimal'

sum = BigDecimal.new("0")
for i in (1..10000)
  sum = sum + BigDecimal.new("0.0001")
end
print sum #=> 0.1E1

Similarly:

(BigDecimal.new(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true

(1.2 - 1.0) == 0.2 #=> false

Special features of accurate decimal arithmetic

Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.

Infinity

BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.

BigDecimal.new(“1.0”) / BigDecimal.new(“0.0”) #=> infinity BigDecimal.new(“-1.0”) / BigDecimal.new(“0.0”) #=> -infinity

You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)

Not a Number

When a computation results in an undefined value, the special value NaN (for 'not a number') is returned.

Example:

BigDecimal.new(“0.0”) / BigDecimal.new(“0.0”) #=> NaN

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

n = BigDecimal.new('NaN') n == 0.0 #=> nil n == n #=> nil

Positive and negative zero

If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.

BigDecimal.new(“1.0”) / BigDecimal.new(“-Infinity”) #=> -0.0

If the value is positive, a value of positive zero is returned.

BigDecimal.new(“1.0”) / BigDecimal.new(“Infinity”) #=> 0.0

(See BigDecimal.mode for how to specify limits of precision.)

Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

Constant Summary collapse

BASE =

Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn't fit in 32 bits, so you couldn't guarantee that two groups could always be multiplied together without overflow.)

INT2FIX((SIGNED_VALUE)VpBaseVal())
EXCEPTION_ALL =

Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.

0xff
EXCEPTION_NaN =

Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.

0x02
EXCEPTION_INFINITY =

Determines what happens when the result of a computation is infinity. See BigDecimal.mode.

0x01
EXCEPTION_UNDERFLOW =

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.

0x04
EXCEPTION_OVERFLOW =

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.

0x01
EXCEPTION_ZERODIVIDE =

Determines what happens when a division by zero is performed. See BigDecimal.mode.

0x01
ROUND_MODE =

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.

0x100
ROUND_UP =

Indicates that values should be rounded away from zero. See BigDecimal.mode.

1
ROUND_DOWN =

Indicates that values should be rounded towards zero. See BigDecimal.mode.

2
ROUND_HALF_UP =

Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.

3
ROUND_HALF_DOWN =

Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.

4
ROUND_CEILING =

Round towards +infinity. See BigDecimal.mode.

5
ROUND_FLOOR =

Round towards -infinity. See BigDecimal.mode.

6
ROUND_HALF_EVEN =

Round towards the even neighbor. See BigDecimal.mode.

7
SIGN_NaN =

Indicates that a value is not a number. See BigDecimal.sign.

0
SIGN_POSITIVE_ZERO =

Indicates that a value is +0. See BigDecimal.sign.

1
SIGN_NEGATIVE_ZERO =

Indicates that a value is -0. See BigDecimal.sign.

-1
SIGN_POSITIVE_FINITE =

Indicates that a value is positive and finite. See BigDecimal.sign.

2
SIGN_NEGATIVE_FINITE =

Indicates that a value is negative and finite. See BigDecimal.sign.

-2
SIGN_POSITIVE_INFINITE =

Indicates that a value is positive and infinite. See BigDecimal.sign.

3
SIGN_NEGATIVE_INFINITE =

Indicates that a value is negative and infinite. See BigDecimal.sign.

-3
INFINITY =

Positive infinity value.

BigDecimal_global_new(1, &arg, rb_cBigDecimal)
NAN =

'Not a Number' value.

BigDecimal_global_new(1, &arg, rb_cBigDecimal)

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#new(initial, digits) ⇒ Object

Create a new BigDecimal object.

initial

The initial value, as an Integer, a Float, a Rational, a BigDecimal, or a String.

If it is a String, spaces are ignored and unrecognized characters terminate the value.

digits

The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value.

The actual number of significant digits used in computation is usually larger than the specified number.


2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
# File 'bigdecimal.c', line 2388

static VALUE
BigDecimal_initialize(int argc, VALUE *argv, VALUE self)
{
    Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
    Real *x = BigDecimal_new(argc, argv);

    if (ToValue(x)) {
	pv = VpCopy(pv, x);
    }
    else {
	VpFree(pv);
	pv = x;
    }
    DATA_PTR(self) = pv;
    pv->obj = self;
    return self;
}

Class Method Details

._loadObject

Internal method used to provide marshalling support. See the Marshal module.


371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# File 'bigdecimal.c', line 371

static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
    ENTER(2);
    Real *pv;
    unsigned char *pch;
    unsigned char ch;
    unsigned long m=0;

    SafeStringValue(str);
    pch = (unsigned char *)RSTRING_PTR(str);
    /* First get max prec */
    while((*pch)!=(unsigned char)'\0' && (ch=*pch++)!=(unsigned char)':') {
        if(!ISDIGIT(ch)) {
            rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
        }
        m = m*10 + (unsigned long)(ch-'0');
    }
    if(m>VpBaseFig()) m -= VpBaseFig();
    GUARD_OBJ(pv,VpNewRbClass(m,(char *)pch,self));
    m /= VpBaseFig();
    if(m && pv->MaxPrec>m) pv->MaxPrec = m+1;
    return ToValue(pv);
}

.double_figObject

BigDecimal.double_fig

The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.


284
285
286
287
288
# File 'bigdecimal.c', line 284

static VALUE
BigDecimal_double_fig(VALUE self)
{
    return INT2FIX(VpDblFig());
}

.limitObject

BigDecimal.limit(digits)

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.


2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
# File 'bigdecimal.c', line 2489

static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
    VALUE  nFig;
    VALUE  nCur = INT2NUM(VpGetPrecLimit());

    if(rb_scan_args(argc,argv,"01",&nFig)==1) {
        int nf;
        if(nFig==Qnil) return nCur;
        Check_Type(nFig, T_FIXNUM);
        nf = FIX2INT(nFig);
        if(nf<0) {
            rb_raise(rb_eArgError, "argument must be positive");
        }
        VpSetPrecLimit(nf);
    }
    return nCur;
}

.modeObject

BigDecimal.mode(mode, value)

Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.

Six values of the mode parameter control the handling of arithmetic exceptions:

BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL

For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:

EXCEPTION_NaN

NaN

EXCEPTION_INFINITY

+infinity or -infinity

EXCEPTION_UNDERFLOW

0

EXCEPTION_OVERFLOW

+infinity or -infinity

EXCEPTION_ZERODIVIDE

+infinity or -infinity

One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:

ROUND_UP, :up

round away from zero

ROUND_DOWN, :down, :truncate

round towards zero (truncate)

ROUND_HALF_UP, :half_up, :default

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)

ROUND_HALF_DOWN, :half_down

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.

ROUND_HALF_EVEN, :half_even, :banker

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker's rounding)

ROUND_CEILING, :ceiling, :ceil

round towards positive infinity (ceil)

ROUND_FLOOR, :floor

round towards negative infinity (floor)


470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# File 'bigdecimal.c', line 470

static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
    VALUE which;
    VALUE val;
    unsigned long f,fo;

    if(rb_scan_args(argc,argv,"11",&which,&val)==1) val = Qnil;

    Check_Type(which, T_FIXNUM);
    f = (unsigned long)FIX2INT(which);

    if(f&VP_EXCEPTION_ALL) {
        /* Exception mode setting */
        fo = VpGetException();
        if(val==Qnil) return INT2FIX(fo);
        if(val!=Qfalse && val!=Qtrue) {
            rb_raise(rb_eArgError, "second argument must be true or false");
            return Qnil; /* Not reached */
        }
        if(f&VP_EXCEPTION_INFINITY) {
            VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_INFINITY):
                           (fo&(~VP_EXCEPTION_INFINITY))));
        }
        fo = VpGetException();
        if(f&VP_EXCEPTION_NaN) {
            VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_NaN):
                           (fo&(~VP_EXCEPTION_NaN))));
        }
        fo = VpGetException();
        if(f&VP_EXCEPTION_UNDERFLOW) {
            VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_UNDERFLOW):
                           (fo&(~VP_EXCEPTION_UNDERFLOW))));
        }
        fo = VpGetException();
        if(f&VP_EXCEPTION_ZERODIVIDE) {
            VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_ZERODIVIDE):
                           (fo&(~VP_EXCEPTION_ZERODIVIDE))));
        }
        fo = VpGetException();
        return INT2FIX(fo);
    }
    if (VP_ROUND_MODE == f) {
	/* Rounding mode setting */
	unsigned short sw;
	fo = VpGetRoundMode();
	if (NIL_P(val)) return INT2FIX(fo);
	sw = check_rounding_mode(val);
	fo = VpSetRoundMode(sw);
	return INT2FIX(fo);
    }
    rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid");
    return Qnil;
}

.save_exception_mode { ... } ⇒ Object

Excecute the provided block, but preserve the exception mode

BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

  BigDecimal.new(BigDecimal('Infinity'))
  BigDecimal.new(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal.new('NaN'))
end

For use with the BigDecimal::EXCEPTION_*

See BigDecimal.mode

Yields:


2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
# File 'bigdecimal.c', line 2549

static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
    unsigned short const exception_mode = VpGetException();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetException(exception_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_limit { ... } ⇒ Object

Excecute the provided block, but preserve the precision limit

BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
    BigDecimal.limit(200)
    puts BigDecimal.limit
end
puts BigDecimal.limit

Yields:


2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
# File 'bigdecimal.c', line 2599

static VALUE
BigDecimal_save_limit(VALUE self)
{
    size_t const limit = VpGetPrecLimit();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetPrecLimit(limit);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_rounding_mode { ... } ⇒ Object

Excecute the provided block, but preserve the rounding mode

BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end

For use with the BigDecimal::ROUND_*

See BigDecimal.mode

Yields:


2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
# File 'bigdecimal.c', line 2574

static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
    unsigned short const round_mode = VpGetRoundMode();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetRoundMode(round_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.verObject

Returns the BigDecimal version number.


113
114
115
116
117
118
119
120
121
122
# File 'bigdecimal.c', line 113

static VALUE
BigDecimal_version(VALUE self)
{
    /*
     * 1.0.0: Ruby 1.8.0
     * 1.0.1: Ruby 1.8.1
     * 1.1.0: Ruby 1.9.3
    */
    return rb_str_new2("1.1.0");
}

Instance Method Details

#%Object

%: a%b = a - (a.to_f/b).floor * b


1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
# File 'bigdecimal.c', line 1340

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div=NULL, *mod=NULL;

    if(BigDecimal_DoDivmod(self,r,&div,&mod)) {
	SAVE(div); SAVE(mod);
	return ToValue(mod);
    }
    return DoSomeOne(self,r,'%');
}

#*Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.


1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
# File 'bigdecimal.c', line 1150

static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a,GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if(!b) return DoSomeOne(self,r,'*');
    SAVE(b);

    mx = a->Prec + b->Prec;
    GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
    VpMult(c, a, b);
    return ToValue(c);
}

#**(exp) ⇒ Object

It is a synonym of BigDecimal#power(exp).


2356
2357
2358
2359
2360
# File 'bigdecimal.c', line 2356

static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
    return BigDecimal_power(1, &exp, self);
}

#+Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.


835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# File 'bigdecimal.c', line 835

static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self,r,'+');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a, b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, 1);
    }
    else {
	GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
	if(!mx) {
	    VpSetInf(c, VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, 1);
	}
    }
    return ToValue(c);
}

#[email protected]Object

Return self.

e.g.

b = +a  # b == a

812
813
814
815
816
# File 'bigdecimal.c', line 812

static VALUE
BigDecimal_uplus(VALUE self)
{
    return self;
}

#-Object

sub(value, digits)

Subtract the specified value.

e.g.

c = a.sub(b,n)
c = a - b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.


889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
# File 'bigdecimal.c', line 889

static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a,GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if(!b) return DoSomeOne(self,r,'-');
    SAVE(b);

    if(VpIsNaN(b)) return b->obj;
    if(VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a,b);
    if (mx == (size_t)-1L) {
        GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
        VpAddSub(c, a, b, -1);
    } else {
        GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
        if(!mx) {
            VpSetInf(c,VpGetSign(a));
        } else {
            VpAddSub(c, a, b, -1);
        }
    }
    return ToValue(c);
}

#[email protected]Object

Return the negation of self.

e.g.

b = -a
b == a * -1

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
# File 'bigdecimal.c', line 1124

static VALUE
BigDecimal_neg(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    GUARD_OBJ(a,GetVpValue(self,1));
    GUARD_OBJ(c,VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
    VpAsgn(c, a, -1);
    return ToValue(c);
}

#/Object

For c = self/r: with round operation


1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
# File 'bigdecimal.c', line 1228

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if(r!=(VALUE)0) return r; /* coerced by other */
    SAVE(c);SAVE(res);SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
	VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal()*(BDIGIT_DBL)res->frac[0]/div->frac[0]));
    }
    return ToValue(c);
}

#<Object

a < b

Returns true if a is less than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).


1070
1071
1072
1073
1074
# File 'bigdecimal.c', line 1070

static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '<');
}

#<=Object

a <= b

Returns true if a is less than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).


1083
1084
1085
1086
1087
# File 'bigdecimal.c', line 1083

static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'L');
}

#<=>Object

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.


1041
1042
1043
1044
1045
# File 'bigdecimal.c', line 1041

static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '*');
}

#==Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new('1.0') == 1.0 -> true


1057
1058
1059
1060
1061
# File 'bigdecimal.c', line 1057

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#===Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new('1.0') == 1.0 -> true


1057
1058
1059
1060
1061
# File 'bigdecimal.c', line 1057

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#>Object

a > b

Returns true if a is greater than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).


1096
1097
1098
1099
1100
# File 'bigdecimal.c', line 1096

static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '>');
}

#>=Object

a >= b

Returns true if a is greater than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)


1109
1110
1111
1112
1113
# File 'bigdecimal.c', line 1109

static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'G');
}

#_dumpObject

Method used to provide marshalling support.

inf = BigDecimal.new('Infinity')
=> #<BigDecimal:1e16fa8,'Infinity',9(9)>
BigDecimal._load(inf._dump)
=> #<BigDecimal:1df8dc8,'Infinity',9(9)>

See the Marshal module.


349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# File 'bigdecimal.c', line 349

static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *vp;
    char *psz;
    VALUE dummy;
    volatile VALUE dump;

    rb_scan_args(argc, argv, "01", &dummy);
    GUARD_OBJ(vp,GetVpValue(self,1));
    dump = rb_str_new(0,VpNumOfChars(vp,"E")+50);
    psz = RSTRING_PTR(dump);
    sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
    VpToString(vp, psz+strlen(psz), 0, 0);
    rb_str_resize(dump, strlen(psz));
    return dump;
}

#absObject

Returns the absolute value.

BigDecimal('5').abs -> 5

BigDecimal('-3').abs -> 3


1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
# File 'bigdecimal.c', line 1541

static VALUE
BigDecimal_abs(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a,GetVpValue(self,1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
    VpAsgn(c, a, 1);
    VpChangeSign(c, 1);
    return ToValue(c);
}

#addObject

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.


1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
# File 'bigdecimal.c', line 1484

static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real   *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_add(self, b);
    else {
       size_t pl = VpSetPrecLimit(0);
       VALUE   c = BigDecimal_add(self,b);
       VpSetPrecLimit(pl);
       GUARD_OBJ(cv,GetVpValue(c,1));
       VpLeftRound(cv,VpGetRoundMode(),mx);
       return ToValue(cv);
    }
}

#ceilObject

ceil(n)

Return the smallest integer greater than or equal to the value, as a BigDecimal.

BigDecimal('3.14159').ceil #=> 4 BigDecimal('-9.1').ceil #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal('3.14159').ceil(3) #=> 3.142 BigDecimal('13345.234').ceil(-2) #=> 13400.0


1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
# File 'bigdecimal.c', line 1779

static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
        iLoc = 0;
    } else {
        Check_Type(vLoc, T_FIXNUM);
        iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a,GetVpValue(self,1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c,a,VP_ROUND_CEIL,iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#coerceObject

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.

e.g. a = BigDecimal.new(“1.0”) b = a / 2.0 -> 0.5

Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.


780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
# File 'bigdecimal.c', line 780

static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
    ENTER(2);
    VALUE obj;
    Real *b;

    if (RB_TYPE_P(other, T_FLOAT)) {
	obj = rb_assoc_new(other, BigDecimal_to_f(self));
    }
    else {
	if (RB_TYPE_P(other, T_RATIONAL)) {
	    Real* pv = DATA_PTR(self);
	    GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
	}
	else {
	    GUARD_OBJ(b, GetVpValue(other, 1));
	}
	obj = rb_assoc_new(b->obj, self);
    }

    return obj;
}

#divObject

See BigDecimal#quo


1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
# File 'bigdecimal.c', line 1448

static VALUE
BigDecimal_div2(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    VALUE b,n;
    int na = rb_scan_args(argc,argv,"11",&b,&n);
    if(na==1) { /* div in Float sense */
       Real *div=NULL;
       Real *mod;
       if(BigDecimal_DoDivmod(self,b,&div,&mod)) {
	  return BigDecimal_to_i(ToValue(div));
       }
       return DoSomeOne(self,b,rb_intern("div"));
    } else {    /* div in BigDecimal sense */
       SIGNED_VALUE ix = GetPositiveInt(n);
       if (ix == 0) return BigDecimal_div(self, b);
       else {
          Real *res=NULL;
          Real *av=NULL, *bv=NULL, *cv=NULL;
          size_t mx = (ix+VpBaseFig()*2);
          size_t pl = VpSetPrecLimit(0);

          GUARD_OBJ(cv,VpCreateRbObject(mx,"0"));
          GUARD_OBJ(av,GetVpValue(self,1));
          GUARD_OBJ(bv,GetVpValue(b,1));
          mx = av->Prec + bv->Prec + 2;
          if(mx <= cv->MaxPrec) mx = cv->MaxPrec+1;
          GUARD_OBJ(res,VpCreateRbObject((mx * 2  + 2)*VpBaseFig(), "#0"));
          VpDivd(cv,res,av,bv);
          VpSetPrecLimit(pl);
          VpLeftRound(cv,VpGetRoundMode(),ix);
          return ToValue(cv);
       }
    }
}

#divmodObject

Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.

For example:

require 'bigdecimal'

a = BigDecimal.new(“42”) b = BigDecimal.new(“9”)

q,m = a.divmod(b)

c = q * b + m

a == c -> true

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.


1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
# File 'bigdecimal.c', line 1432

static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
    ENTER(5);
    Real *div=NULL, *mod=NULL;

    if(BigDecimal_DoDivmod(self,r,&div,&mod)) {
	SAVE(div); SAVE(mod);
	return rb_assoc_new(ToValue(div), ToValue(mod));
    }
    return DoSomeOne(self,r,rb_intern("divmod"));
}

#eql?Boolean

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new('1.0') == 1.0 -> true

Returns:

  • (Boolean)

1057
1058
1059
1060
1061
# File 'bigdecimal.c', line 1057

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#exponentObject

Returns the exponent of the BigDecimal number, as an Integer.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.


1967
1968
1969
1970
1971
1972
# File 'bigdecimal.c', line 1967

static VALUE
BigDecimal_exponent(VALUE self)
{
    ssize_t e = VpExponent10(GetVpValue(self, 1));
    return INT2NUM(e);
}

#finite?Boolean

Returns True if the value is finite (not NaN or infinite)

Returns:

  • (Boolean)

615
616
617
618
619
620
621
622
# File 'bigdecimal.c', line 615

static VALUE
BigDecimal_IsFinite(VALUE self)
{
    Real *p = GetVpValue(self,1);
    if(VpIsNaN(p)) return Qfalse;
    if(VpIsInf(p)) return Qfalse;
    return Qtrue;
}

#fixObject

Return the integer part of the number.


1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
# File 'bigdecimal.c', line 1582

static VALUE
BigDecimal_fix(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a,GetVpValue(self,1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
    VpActiveRound(c,a,VP_ROUND_DOWN,0); /* 0: round off */
    return ToValue(c);
}

#floorObject

floor(n)

Return the largest integer less than or equal to the value, as a BigDecimal.

BigDecimal('3.14159').floor #=> 3 BigDecimal('-9.1').floor #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal('3.14159').floor(3) #=> 3.141 BigDecimal('13345.234').floor(-2) #=> 13300.0


1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
# File 'bigdecimal.c', line 1732

static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
        iLoc = 0;
    } else {
        Check_Type(vLoc, T_FIXNUM);
        iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a,GetVpValue(self,1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c,a,VP_ROUND_FLOOR,iLoc);
#ifdef BIGDECIMAL_DEBUG
    VPrint(stderr, "floor: c=%\n", c);
#endif
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#fracObject

Return the fractional part of the number.


1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
# File 'bigdecimal.c', line 1701

static VALUE
BigDecimal_frac(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a,GetVpValue(self,1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
    VpFrac(c, a);
    return ToValue(c);
}

#hashObject

Creates a hash for this BigDecimal.

Two BigDecimals with equal sign, fractional part and exponent have the same hash.


320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# File 'bigdecimal.c', line 320

static VALUE
BigDecimal_hash(VALUE self)
{
    ENTER(1);
    Real *p;
    st_index_t hash;

    GUARD_OBJ(p,GetVpValue(self,1));
    hash = (st_index_t)p->sign;
    /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
    if(hash == 2 || hash == (st_index_t)-2) {
	hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
	hash += p->exponent;
    }
    return INT2FIX(hash);
}

#infinite?Boolean

Returns nil, -1, or 1 depending on whether the value is finite, -infinity, or infinity.

Returns:

  • (Boolean)

605
606
607
608
609
610
611
612
# File 'bigdecimal.c', line 605

static VALUE
BigDecimal_IsInfinite(VALUE self)
{
    Real *p = GetVpValue(self,1);
    if(VpIsPosInf(p)) return INT2FIX(1);
    if(VpIsNegInf(p)) return INT2FIX(-1);
    return Qnil;
}

#initialize_copyObject

:nodoc:

private method to dup and clone the provided BigDecimal other


2410
2411
2412
2413
2414
2415
2416
2417
2418
# File 'bigdecimal.c', line 2410

static VALUE
BigDecimal_initialize_copy(VALUE self, VALUE other)
{
    Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
    Real *x = rb_check_typeddata(other, &BigDecimal_data_type);

    DATA_PTR(self) = VpCopy(pv, x);
    return self;
}

#inspectObject

Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:

BigDecimal.new(“1234.5678”).inspect -> “#<BigDecimal:b7ea1130,'0.12345678E4',8(12)>”

The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.


1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
# File 'bigdecimal.c', line 1984

static VALUE
BigDecimal_inspect(VALUE self)
{
    ENTER(5);
    Real *vp;
    volatile VALUE obj;
    size_t nc;
    char *psz, *tmp;

    GUARD_OBJ(vp,GetVpValue(self,1));
    nc = VpNumOfChars(vp,"E");
    nc +=(nc + 9) / 10;

    obj = rb_str_new(0, nc+256);
    psz = RSTRING_PTR(obj);
    sprintf(psz,"#<BigDecimal:%"PRIxVALUE",'",self);
    tmp = psz + strlen(psz);
    VpToString(vp, tmp, 10, 0);
    tmp += strlen(tmp);
    sprintf(tmp, "',%"PRIuSIZE"(%"PRIuSIZE")>", VpPrec(vp)*VpBaseFig(), VpMaxPrec(vp)*VpBaseFig());
    rb_str_resize(obj, strlen(psz));
    return obj;
}

#moduloObject

%: a%b = a - (a.to_f/b).floor * b


1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
# File 'bigdecimal.c', line 1340

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div=NULL, *mod=NULL;

    if(BigDecimal_DoDivmod(self,r,&div,&mod)) {
	SAVE(div); SAVE(mod);
	return ToValue(mod);
    }
    return DoSomeOne(self,r,'%');
}

#multObject

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.


1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
# File 'bigdecimal.c', line 1518

static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_mult(self, b);
    else {
       size_t pl = VpSetPrecLimit(0);
       VALUE   c = BigDecimal_mult(self,b);
       VpSetPrecLimit(pl);
       GUARD_OBJ(cv,GetVpValue(c,1));
       VpLeftRound(cv,VpGetRoundMode(),mx);
       return ToValue(cv);
    }
}

#nan?Boolean

Returns True if the value is Not a Number

Returns:

  • (Boolean)

594
595
596
597
598
599
600
# File 'bigdecimal.c', line 594

static VALUE
BigDecimal_IsNaN(VALUE self)
{
    Real *p = GetVpValue(self,1);
    if(VpIsNaN(p))  return Qtrue;
    return Qfalse;
}

#nonzero?Boolean

Returns self if the value is non-zero, nil otherwise.

Returns:

  • (Boolean)

1031
1032
1033
1034
1035
1036
# File 'bigdecimal.c', line 1031

static VALUE
BigDecimal_nonzero(VALUE self)
{
    Real *a = GetVpValue(self,1);
    return VpIsZero(a) ? Qnil : self;
}

#powerObject

power(n) power(n, prec)

Returns the value raised to the power of n.

Note that n must be an Integer.

Also available as the operator **


2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
# File 'bigdecimal.c', line 2130

static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
    ENTER(5);
    VALUE vexp, prec;
    Real* exp = NULL;
    Real *x, *y;
    ssize_t mp, ma, n;
    SIGNED_VALUE int_exp;
    double d;

    rb_scan_args(argc, argv, "11", &vexp, &prec);

    GUARD_OBJ(x, GetVpValue(self, 1));
    n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);

    if (VpIsNaN(x)) {
	y = VpCreateRbObject(n, "0#");
	RB_GC_GUARD(y->obj);
	VpSetNaN(y);
	return ToValue(y);
    }

retry:
    switch (TYPE(vexp)) {
      case T_FIXNUM:
	break;

      case T_BIGNUM:
	break;

      case T_FLOAT:
	d = RFLOAT_VALUE(vexp);
	if (d == round(d)) {
	    vexp = LL2NUM((LONG_LONG)round(d));
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
	break;

      case T_RATIONAL:
	if (is_zero(RRATIONAL(vexp)->num)) {
	    if (is_positive(vexp)) {
		vexp = INT2FIX(0);
		goto retry;
	    }
	}
	else if (is_one(RRATIONAL(vexp)->den)) {
	    vexp = RRATIONAL(vexp)->num;
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, n, 1);
	break;

      case T_DATA:
	if (is_kind_of_BigDecimal(vexp)) {
	    VALUE zero = INT2FIX(0);
	    VALUE rounded = BigDecimal_round(1, &zero, vexp);
	    if (RTEST(BigDecimal_eq(vexp, rounded))) {
		vexp = BigDecimal_to_i(vexp);
		goto retry;
	    }
	    exp = DATA_PTR(vexp);
	    break;
	}
	/* fall through */
      default:
	rb_raise(rb_eTypeError,
		 "wrong argument type %s (expected scalar Numeric)",
		 rb_obj_classname(vexp));
    }

    if (VpIsZero(x)) {
	if (is_negative(vexp)) {
	    y = VpCreateRbObject(n, "#0");
	    RB_GC_GUARD(y->obj);
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-0) ** (-even_integer)  -> Infinity */
			VpSetPosInf(y);
		    }
		    else {
			/* (-0) ** (-odd_integer)  -> -Infinity */
			VpSetNegInf(y);
		    }
		}
		else {
		    /* (-0) ** (-non_integer)  -> Infinity */
		    VpSetPosInf(y);
		}
	    }
	    else {
		/* (+0) ** (-num)  -> Infinity */
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
	else if (is_zero(vexp)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else {
	    return ToValue(VpCreateRbObject(n, "0"));
	}
    }

    if (is_zero(vexp)) {
	return ToValue(VpCreateRbObject(n, "1"));
    }
    else if (is_one(vexp)) {
	return self;
    }

    if (VpIsInf(x)) {
	if (is_negative(vexp)) {
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-Infinity) ** (-even_integer) -> +0 */
			return ToValue(VpCreateRbObject(n, "0"));
		    }
		    else {
			/* (-Infinity) ** (-odd_integer) -> -0 */
			return ToValue(VpCreateRbObject(n, "-0"));
		    }
		}
		else {
		    /* (-Infinity) ** (-non_integer) -> -0 */
		    return ToValue(VpCreateRbObject(n, "-0"));
		}
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    y = VpCreateRbObject(n, "0#");
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			VpSetPosInf(y);
		    }
		    else {
			VpSetNegInf(y);
		    }
		}
		else {
		    /* TODO: support complex */
		    rb_raise(rb_eMathDomainError,
			     "a non-integral exponent for a negative base");
		}
	    }
	    else {
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
    }

    if (exp != NULL) {
	return rmpd_power_by_big_decimal(x, exp, n);
    }
    else if (RB_TYPE_P(vexp, T_BIGNUM)) {
	VALUE abs_value = BigDecimal_abs(self);
	if (is_one(abs_value)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
	    if (is_negative(vexp)) {
		y = VpCreateRbObject(n, "0#");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (VpGetSign(x) < 0 && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    if (is_positive(vexp)) {
		y = VpCreateRbObject(n, "0#");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (VpGetSign(x) < 0 && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
    }

    int_exp = FIX2INT(vexp);
    ma = int_exp;
    if (ma < 0)  ma = -ma;
    if (ma == 0) ma = 1;

    if (VpIsDef(x)) {
        mp = x->Prec * (VpBaseFig() + 1);
        GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
    }
    else {
        GUARD_OBJ(y, VpCreateRbObject(1, "0"));
    }
    VpPower(y, x, int_exp);
    return ToValue(y);
}

#precsObject

precs

Returns an Array of two Integer values.

The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.


299
300
301
302
303
304
305
306
307
308
309
310
# File 'bigdecimal.c', line 299

static VALUE
BigDecimal_prec(VALUE self)
{
    ENTER(1);
    Real *p;
    VALUE obj;

    GUARD_OBJ(p,GetVpValue(self,1));
    obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
		       INT2NUM(p->MaxPrec*VpBaseFig()));
    return obj;
}

#quoObject

For c = self/r: with round operation


1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
# File 'bigdecimal.c', line 1228

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if(r!=(VALUE)0) return r; /* coerced by other */
    SAVE(c);SAVE(res);SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
	VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal()*(BDIGIT_DBL)res->frac[0]/div->frac[0]));
    }
    return ToValue(c);
}

#remainderObject

remainder


1403
1404
1405
1406
1407
1408
1409
1410
1411
# File 'bigdecimal.c', line 1403

static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
    VALUE  f;
    Real  *d,*rv=0;
    f = BigDecimal_divremain(self,r,&d,&rv);
    if(f!=(VALUE)0) return f;
    return ToValue(rv);
}

#roundObject

round(n, mode)

Round to the nearest 1 (by default), returning the result as a BigDecimal.

BigDecimal('3.14159').round #=> 3 BigDecimal('8.7').round #=> 9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal('3.14159').round(3) #=> 3.142 BigDecimal('13345.234').round(-2) #=> 13300.0

The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.


1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
# File 'bigdecimal.c', line 1616

static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real   *c, *a;
    int    iLoc = 0;
    VALUE  vLoc;
    VALUE  vRound;
    size_t mx, pl;

    unsigned short sw = VpGetRoundMode();

    switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
    case 0:
        iLoc = 0;
        break;
    case 1:
        Check_Type(vLoc, T_FIXNUM);
        iLoc = FIX2INT(vLoc);
        break;
    case 2:
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
	sw = check_rounding_mode(vRound);
	break;
    }

    pl = VpSetPrecLimit(0);
    GUARD_OBJ(a,GetVpValue(self,1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c,a,sw,iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#signObject

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.

The specific value returned indicates the type and sign of the BigDecimal, as follows:

BigDecimal::SIGN_NaN

value is Not a Number

BigDecimal::SIGN_POSITIVE_ZERO

value is +0

BigDecimal::SIGN_NEGATIVE_ZERO

value is -0

BigDecimal::SIGN_POSITIVE_INFINITE

value is +infinity

BigDecimal::SIGN_NEGATIVE_INFINITE

value is -infinity

BigDecimal::SIGN_POSITIVE_FINITE

value is positive

BigDecimal::SIGN_NEGATIVE_FINITE

value is negative


2524
2525
2526
2527
2528
2529
# File 'bigdecimal.c', line 2524

static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
    int s = GetVpValue(self,1)->sign;
    return INT2FIX(s);
}

#splitObject

Splits a BigDecimal number into four parts, returned as an array of values.

The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.

The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an Integer.

The fourth value is an Integer exponent.

If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a BigDecimal to a float as follows:

sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)

(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)


1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
# File 'bigdecimal.c', line 1930

static VALUE
BigDecimal_split(VALUE self)
{
    ENTER(5);
    Real *vp;
    VALUE obj,str;
    ssize_t e, s;
    char *psz1;

    GUARD_OBJ(vp,GetVpValue(self,1));
    str = rb_str_new(0, VpNumOfChars(vp,"E"));
    psz1 = RSTRING_PTR(str);
    VpSzMantissa(vp,psz1);
    s = 1;
    if(psz1[0]=='-') {
	size_t len = strlen(psz1+1);

	memmove(psz1, psz1+1, len);
	psz1[len] = '\0';
        s = -1;
    }
    if(psz1[0]=='N') s=0; /* NaN */
    e = VpExponent10(vp);
    obj  = rb_ary_new2(4);
    rb_ary_push(obj, INT2FIX(s));
    rb_ary_push(obj, str);
    rb_str_resize(str, strlen(psz1));
    rb_ary_push(obj, INT2FIX(10));
    rb_ary_push(obj, INT2NUM(e));
    return obj;
}

#sqrtObject

sqrt(n)

Returns the square root of the value.

Result has at least n significant digits.


1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
# File 'bigdecimal.c', line 1563

static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
    ENTER(5);
    Real *c, *a;
    size_t mx, n;

    GUARD_OBJ(a,GetVpValue(self,1));
    mx = a->Prec *(VpBaseFig() + 1);

    n = GetPositiveInt(nFig) + VpDblFig() + 1;
    if(mx <= n) mx = n;
    GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
    VpSqrt(c, a);
    return ToValue(c);
}

#subObject


1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
# File 'bigdecimal.c', line 1501

static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_sub(self, b);
    else {
       size_t pl = VpSetPrecLimit(0);
       VALUE   c = BigDecimal_sub(self,b);
       VpSetPrecLimit(pl);
       GUARD_OBJ(cv,GetVpValue(c,1));
       VpLeftRound(cv,VpGetRoundMode(),mx);
       return ToValue(cv);
    }
}

#to_dObject

call-seq:

a.to_d -> bigdecimal

Returns self.


79
80
81
# File 'lib/bigdecimal/util.rb', line 79

def to_d
  self
end

#to_digitsObject

call-seq:

a.to_digits -> string

Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.

require 'bigdecimal'
require 'bigdecimal/util'

d = BigDecimal.new("3.14")
d.to_digits
# => "3.14"

65
66
67
68
69
70
71
72
73
# File 'lib/bigdecimal/util.rb', line 65

def to_digits
  if self.nan? || self.infinite? || self.zero?
    self.to_s
  else
    i       = self.to_i.to_s
    _,f,_,z = self.frac.split
    i + "." + ("0"*(-z)) + f
  end
end

#to_fObject

Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.


687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# File 'bigdecimal.c', line 687

static VALUE
BigDecimal_to_f(VALUE self)
{
    ENTER(1);
    Real *p;
    double d;
    SIGNED_VALUE e;
    char *buf;
    volatile VALUE str;

    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpVtoD(&d, &e, p) != 1)
	return rb_float_new(d);
    if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
	goto overflow;
    if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
	goto underflow;

    str = rb_str_new(0, VpNumOfChars(p,"E"));
    buf = RSTRING_PTR(str);
    VpToString(p, buf, 0, 0);
    errno = 0;
    d = strtod(buf, 0);
    if (errno == ERANGE) {
	if (d == 0.0) goto underflow;
	if (fabs(d) >= HUGE_VAL) goto overflow;
    }
    return rb_float_new(d);

overflow:
    VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
    if (p->sign >= 0)
	return rb_float_new(VpGetDoublePosInf());
    else
	return rb_float_new(VpGetDoubleNegInf());

underflow:
    VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
    if (p->sign >= 0)
	return rb_float_new(0.0);
    else
	return rb_float_new(-0.0);
}

#to_iObject

Returns the value as an integer (Fixnum or Bignum).

If the BigNumber is infinity or NaN, raises FloatDomainError.


642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
# File 'bigdecimal.c', line 642

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p,GetVpValue(self,1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if(e<=0) return INT2FIX(0);
    nf = VpBaseFig();
    if(e<=nf) {
        return LONG2NUM((long)(VpGetSign(p)*(BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_PTR(a)[1];
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (VpGetSign(p) < 0) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	if (RB_TYPE_P(ret, T_FLOAT))
	    rb_raise(rb_eFloatDomainError, "Infinity");
	return ret;
    }
}

#to_intObject

Returns the value as an integer (Fixnum or Bignum).

If the BigNumber is infinity or NaN, raises FloatDomainError.


642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
# File 'bigdecimal.c', line 642

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p,GetVpValue(self,1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if(e<=0) return INT2FIX(0);
    nf = VpBaseFig();
    if(e<=nf) {
        return LONG2NUM((long)(VpGetSign(p)*(BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_PTR(a)[1];
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (VpGetSign(p) < 0) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	if (RB_TYPE_P(ret, T_FLOAT))
	    rb_raise(rb_eFloatDomainError, "Infinity");
	return ret;
    }
}

#to_rObject

Converts a BigDecimal to a Rational.


734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
# File 'bigdecimal.c', line 734

static VALUE
BigDecimal_to_r(VALUE self)
{
    Real *p;
    ssize_t sign, power, denomi_power;
    VALUE a, digits, numerator;

    p = GetVpValue(self,1);
    BigDecimal_check_num(p);

    sign = VpGetSign(p);
    power = VpExponent10(p);
    a = BigDecimal_split(self);
    digits = RARRAY_PTR(a)[1];
    denomi_power = power - RSTRING_LEN(digits);
    numerator = rb_funcall(digits, rb_intern("to_i"), 0);

    if (sign < 0) {
	numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
    }
    if (denomi_power < 0) {
	return rb_Rational(numerator,
			   rb_funcall(INT2FIX(10), rb_intern("**"), 1,
				      INT2FIX(-denomi_power)));
    }
    else {
        return rb_Rational1(rb_funcall(numerator, '*', 1,
				       rb_funcall(INT2FIX(10), rb_intern("**"), 1,
						  INT2FIX(denomi_power))));
    }
}

#to_sObject

to_s(s)

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional '+' or ' ', followed by an optional number, followed by an optional 'E' or 'F'.

If there is a '+' at the start of s, positive values are returned with a leading '+'.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many fractional digits.

If s ends with an 'E', engineering notation (0.xxxxEnn) is used.

If s ends with an 'F', conventional floating point notation is used.

Examples:

BigDecimal.new('-123.45678901234567890').to_s('5F')

#=> '-123.45678 90123 45678 9'

BigDecimal.new('123.45678901234567890').to_s('+8F')

#=> '+123.45678901 23456789'

BigDecimal.new('123.45678901234567890').to_s(' F')

#=> ' 123.4567890123456789'

1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
# File 'bigdecimal.c', line 1839

static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    int   fmt = 0;   /* 0:E format */
    int   fPlus = 0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */
    Real  *vp;
    volatile VALUE str;
    char  *psz;
    char   ch;
    size_t nc, mc = 0;
    VALUE  f;

    GUARD_OBJ(vp,GetVpValue(self,1));

    if (rb_scan_args(argc,argv,"01",&f)==1) {
	if (RB_TYPE_P(f, T_STRING)) {
	    SafeStringValue(f);
	    psz = RSTRING_PTR(f);
	    if (*psz == ' ') {
		fPlus = 1;
		psz++;
	    }
	    else if (*psz == '+') {
		fPlus = 2;
		psz++;
	    }
	    while ((ch = *psz++) != 0) {
		if (ISSPACE(ch)) {
		    continue;
		}
		if (!ISDIGIT(ch)) {
		    if (ch == 'F' || ch == 'f') {
			fmt = 1; /* F format */
		    }
		    break;
		}
		mc = mc * 10 + ch - '0';
	    }
	}
	else {
	    mc = (size_t)GetPositiveInt(f);
	}
    }
    if (fmt) {
	nc = VpNumOfChars(vp, "F");
    }
    else {
	nc = VpNumOfChars(vp, "E");
    }
    if (mc > 0) {
	nc += (nc + mc - 1) / mc + 1;
    }

    str = rb_str_new(0, nc);
    psz = RSTRING_PTR(str);

    if (fmt) {
	VpToFString(vp, psz, mc, fPlus);
    }
    else {
	VpToString (vp, psz, mc, fPlus);
    }
    rb_str_resize(str, strlen(psz));
    return str;
}

#truncateObject

truncate(n)

Truncate to the nearest 1, returning the result as a BigDecimal.

BigDecimal('3.14159').truncate #=> 3 BigDecimal('8.7').truncate #=> 8

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal('3.14159').truncate(3) #=> 3.141 BigDecimal('13345.234').truncate(-2) #=> 13300.0


1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
# File 'bigdecimal.c', line 1672

static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
        iLoc = 0;
    } else {
        Check_Type(vLoc, T_FIXNUM);
        iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a,GetVpValue(self,1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c,a,VP_ROUND_DOWN,iLoc); /* 0: truncate */
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#zero?Boolean

Returns True if the value is zero.

Returns:

  • (Boolean)

1023
1024
1025
1026
1027
1028
# File 'bigdecimal.c', line 1023

static VALUE
BigDecimal_zero(VALUE self)
{
    Real *a = GetVpValue(self,1);
    return VpIsZero(a) ? Qtrue : Qfalse;
}