Class: Anthropic::Models::MessageCountTokensParams
- Inherits:
-
Internal::Type::BaseModel
- Object
- Internal::Type::BaseModel
- Anthropic::Models::MessageCountTokensParams
- Extended by:
- Internal::Type::RequestParameters::Converter
- Includes:
- Internal::Type::RequestParameters
- Defined in:
- lib/anthropic/models/message_count_tokens_params.rb
Overview
Defined Under Namespace
Modules: System
Instance Attribute Summary collapse
-
#messages ⇒ Array<Anthropic::Models::MessageParam>
Input messages.
-
#model ⇒ Symbol, ...
The model that will complete your prompt.\n\nSee models for additional details and options.
-
#system_ ⇒ String, ...
System prompt.
-
#thinking ⇒ Anthropic::Models::ThinkingConfigEnabled, ...
Configuration for enabling Claude's extended thinking.
-
#tool_choice ⇒ Anthropic::Models::ToolChoiceAuto, ...
How the model should use the provided tools.
-
#tools ⇒ Array<Anthropic::Models::Tool, Anthropic::Models::ToolBash20250124, Anthropic::Models::ToolTextEditor20250124, Anthropic::Models::ToolTextEditor20250429, Anthropic::Models::ToolTextEditor20250728, Anthropic::Models::WebSearchTool20250305>?
Definitions of tools that the model may use.
Attributes included from Internal::Type::RequestParameters
Instance Method Summary collapse
-
#initialize(messages: , model: , system_: nil, thinking: nil, tool_choice: nil, tools: nil, request_options: {}) ⇒ void
constructor
Some parameter documentations has been truncated, see MessageCountTokensParams for more details.
Methods included from Internal::Type::RequestParameters::Converter
Methods included from Internal::Type::RequestParameters
Methods inherited from Internal::Type::BaseModel
==, #==, #[], coerce, #deconstruct_keys, #deep_to_h, dump, fields, hash, #hash, inherited, inspect, #inspect, known_fields, optional, recursively_to_h, required, #to_h, #to_json, #to_s, to_sorbet_type, #to_yaml
Methods included from Internal::Type::Converter
#coerce, coerce, #dump, dump, inspect, #inspect, meta_info, new_coerce_state, type_info
Methods included from Internal::Util::SorbetRuntimeSupport
#const_missing, #define_sorbet_constant!, #sorbet_constant_defined?, #to_sorbet_type, to_sorbet_type
Constructor Details
#initialize(messages: , model: , system_: nil, thinking: nil, tool_choice: nil, tools: nil, request_options: {}) ⇒ void
Some parameter documentations has been truncated, see Anthropic::Models::MessageCountTokensParams for more details.
|
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 199
|
Instance Attribute Details
#messages ⇒ Array<Anthropic::Models::MessageParam>
Input messages.
Our models are trained to operate on alternating user
and assistant
conversational turns. When creating a new Message
, you specify the prior
conversational turns with the messages
parameter, and the model then generates
the next Message
in the conversation. Consecutive user
or assistant
turns
in your request will be combined into a single turn.
Each input message must be an object with a role
and content
. You can
specify a single user
-role message, or you can include multiple user
and
assistant
messages.
If the final message uses the assistant
role, the response content will
continue immediately from the content in that message. This can be used to
constrain part of the model's response.
Example with a single user
message:
[{ "role": "user", "content": "Hello, Claude" }]
Example with multiple conversational turns:
[
{ "role": "user", "content": "Hello there." },
{ "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
{ "role": "user", "content": "Can you explain LLMs in plain English?" }
]
Example with a partially-filled response from Claude:
[
{
"role": "user",
"content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
},
{ "role": "assistant", "content": "The best answer is (" }
]
Each input message content
may be either a single string
or an array of
content blocks, where each block has a specific type
. Using a string
for
content
is shorthand for an array of one content block of type "text"
. The
following input messages are equivalent:
{ "role": "user", "content": "Hello, Claude" }
{ "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
See input examples.
Note that if you want to include a
system prompt, you can use
the top-level system
parameter — there is no "system"
role for input
messages in the Messages API.
There is a limit of 100,000 messages in a single request.
78 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 78 required :messages, -> { Anthropic::Internal::Type::ArrayOf[Anthropic::MessageParam] } |
#model ⇒ Symbol, ...
The model that will complete your prompt.\n\nSee models for additional details and options.
86 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 86 required :model, union: -> { Anthropic::Model } |
#system_ ⇒ String, ...
System prompt.
A system prompt is a way of providing context and instructions to Claude, such as specifying a particular goal or role. See our guide to system prompts.
96 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 96 optional :system_, union: -> { Anthropic::MessageCountTokensParams::System }, api_name: :system |
#thinking ⇒ Anthropic::Models::ThinkingConfigEnabled, ...
Configuration for enabling Claude's extended thinking.
When enabled, responses include thinking
content blocks showing Claude's
thinking process before the final answer. Requires a minimum budget of 1,024
tokens and counts towards your max_tokens
limit.
See extended thinking for details.
110 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 110 optional :thinking, union: -> { Anthropic::ThinkingConfigParam } |
#tool_choice ⇒ Anthropic::Models::ToolChoiceAuto, ...
How the model should use the provided tools. The model can use a specific tool, any available tool, decide by itself, or not use tools at all.
117 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 117 optional :tool_choice, union: -> { Anthropic::ToolChoice } |
#tools ⇒ Array<Anthropic::Models::Tool, Anthropic::Models::ToolBash20250124, Anthropic::Models::ToolTextEditor20250124, Anthropic::Models::ToolTextEditor20250429, Anthropic::Models::ToolTextEditor20250728, Anthropic::Models::WebSearchTool20250305>?
Definitions of tools that the model may use.
If you include tools
in your API request, the model may return tool_use
content blocks that represent the model's use of those tools. You can then run
those tools using the tool input generated by the model and then optionally
return results back to the model using tool_result
content blocks.
There are two types of tools: client tools and server tools. The behavior described below applies to client tools. For server tools, see their individual documentation as each has its own behavior (e.g., the web search tool).
Each tool definition includes:
name
: Name of the tool.description
: Optional, but strongly-recommended description of the tool.input_schema
: JSON schema for the toolinput
shape that the model will produce intool_use
output content blocks.
For example, if you defined tools
as:
[
{
"name": "get_stock_price",
"description": "Get the current stock price for a given ticker symbol.",
"input_schema": {
"type": "object",
"properties": {
"ticker": {
"type": "string",
"description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
}
},
"required": ["ticker"]
}
}
]
And then asked the model "What's the S&P 500 at today?", the model might produce
tool_use
content blocks in the response like this:
[
{
"type": "tool_use",
"id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"name": "get_stock_price",
"input": { "ticker": "^GSPC" }
}
]
You might then run your get_stock_price
tool with {"ticker": "^GSPC"}
as an
input, and return the following back to the model in a subsequent user
message:
[
{
"type": "tool_result",
"tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"content": "259.75 USD"
}
]
Tools can be used for workflows that include running client-side tools and functions, or more generally whenever you want the model to produce a particular JSON structure of output.
See our guide for more details.
197 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 197 optional :tools, -> { Anthropic::Internal::Type::ArrayOf[union: Anthropic::MessageCountTokensTool] } |