Class: Word2Vec::WordVectors
- Inherits:
-
Object
- Object
- Word2Vec::WordVectors
- Defined in:
- lib/word2vec/utils.rb,
lib/word2vec/word_vectors.rb
Instance Attribute Summary collapse
-
#clusters ⇒ Object
Returns the value of attribute clusters.
-
#vectors ⇒ Object
Returns the value of attribute vectors.
-
#vocab ⇒ Object
Returns the value of attribute vocab.
-
#vocab_hash ⇒ Object
Returns the value of attribute vocab_hash.
Class Method Summary collapse
- .from_binary(fname, vocab_unicode_size: 78, desired_vocab: nil, encoding: "utf-8") ⇒ Object
- .from_mmap(fname) ⇒ Object
- .from_text(fname, vocab_unicode_size: 78, desired_vocab: nil, encoding: "utf-8") ⇒ Object
- .unitvec(vec) ⇒ Object
Instance Method Summary collapse
- #[](word) ⇒ Object
- #analogy(pos:, neg:, n: 10) ⇒ Object
- #cosine(word, n: 10) ⇒ Object
- #generate_response(indices, metrics, clusters: true) ⇒ Object
- #get_vector(word) ⇒ Object
- #include?(word) ⇒ Boolean
-
#initialize(vocab:, vectors:, clusters: nil) ⇒ WordVectors
constructor
A new instance of WordVectors.
- #ix(word) ⇒ Object
- #to_mmap(fname) ⇒ Object
- #word(ix) ⇒ Object
Constructor Details
#initialize(vocab:, vectors:, clusters: nil) ⇒ WordVectors
Returns a new instance of WordVectors.
9 10 11 12 13 14 15 16 17 18 |
# File 'lib/word2vec/word_vectors.rb', line 9 def initialize(vocab:, vectors:, clusters: nil) @vocab = vocab @vectors = vectors @clusters = clusters @vocab_hash = {} vocab.each_with_index do |word, i| @vocab_hash[word] = i end end |
Instance Attribute Details
#clusters ⇒ Object
Returns the value of attribute clusters.
7 8 9 |
# File 'lib/word2vec/word_vectors.rb', line 7 def clusters @clusters end |
#vectors ⇒ Object
Returns the value of attribute vectors.
7 8 9 |
# File 'lib/word2vec/word_vectors.rb', line 7 def vectors @vectors end |
#vocab ⇒ Object
Returns the value of attribute vocab.
7 8 9 |
# File 'lib/word2vec/word_vectors.rb', line 7 def vocab @vocab end |
#vocab_hash ⇒ Object
Returns the value of attribute vocab_hash.
7 8 9 |
# File 'lib/word2vec/word_vectors.rb', line 7 def vocab_hash @vocab_hash end |
Class Method Details
.from_binary(fname, vocab_unicode_size: 78, desired_vocab: nil, encoding: "utf-8") ⇒ Object
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# File 'lib/word2vec/word_vectors.rb', line 89 def self.from_binary(fname, vocab_unicode_size: 78, desired_vocab: nil, encoding: "utf-8") vocab = nil vectors = nil File.open(fname, 'rb') do |fin| header = fin.readline vocab_size, vector_size = header.split.map(&:to_i) # TODO: replace numpy with nmatrix # little-endian (<), Unicode (U), 78 characters == 2496 bytes (78) # vocab = numpy.empty(vocab_size, dtype = '<U%s' % vocab_unicode_size) # vectors = numpy.empty([vocab_size, vector_size], dtype = np.float) # binary_len = numpy.dtype(np.float32).itemsize * vector_size vocab = NMatrix.new([vocab_size], "", dtype: :object).to_a vectors = NMatrix.random([vocab_size, vector_size], dtype: :float64).to_a binary_len = 4 * vector_size # need to calculate from a data type vocab_size.times do |i| word = '' while true ch = fin.read(1) if ch == ' ' break end word += ch end inklude = desired_vocab == nil || desired_vocab.include?(word) if inklude vocab[i] = word.force_encoding(encoding) end # read vector vector = NMatrix[*fin.read(binary_len).unpack('f*'), dtype: :float32].to_a if inklude vectors[i] = unitvec(vector) end fin.read(1) # newline end if desired_vocab != nil indices = vocab.each_with_index.map { |word, i| i if vocab != nil }.compact vectors = vectors.values_at(*indices) vocab = vocab.values_at(*indices) end end self.new(vocab: vocab, vectors: vectors) end |
.from_mmap(fname) ⇒ Object
178 179 180 |
# File 'lib/word2vec/word_vectors.rb', line 178 def self.from_mmap(fname) raise NotImplementedError end |
.from_text(fname, vocab_unicode_size: 78, desired_vocab: nil, encoding: "utf-8") ⇒ Object
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# File 'lib/word2vec/word_vectors.rb', line 139 def self.from_text(fname, vocab_unicode_size: 78, desired_vocab: nil, encoding: "utf-8") vocab = nil vectors = nil File.open(fname, 'rb') do |fin| header = fin.readline vocab_size, vector_size = header.split.map(&:to_i) # TODO: replace numpy with nmatrix # little-endian (<), Unicode (U), 78 characters == 2496 bytes (78) # vocab = numpy.empty(vocab_size, dtype = '<U%s' % vocab_unicode_size) # vectors = numpy.empty([vocab_size, vector_size], dtype = np.float) # binary_len = numpy.dtype(np.float32).itemsize * vector_size vocab = NMatrix.new([vocab_size], "", dtype: :object).to_a vectors = NMatrix.random([vocab_size, vector_size], dtype: :float64).to_a fin.each_line.with_index do |line, i| line = line.force_encoding(encoding).strip parts = line.split(" ") word = parts[0] inklude = desired_vocab == nil || desired_vocab.include?(word) if inklude vector = parts[1..-1].map(&:to_f) vocab[i] = word vectors[i] = unitvec(vector) end end if desired_vocab != nil indices = vocab.each_with_index.map { |word, i| i if vocab != nil }.compact vectors = vectors.values_at(*indices) vocab = vocab.values_at(*indices) end end self.new(vocab: vocab, vectors: vectors) end |
.unitvec(vec) ⇒ Object
5 6 7 |
# File 'lib/word2vec/utils.rb', line 5 def self.unitvec(vec) (NMatrix[*vec] * (1.0 / NMatrix[*vec].norm2)).to_a end |
Instance Method Details
#[](word) ⇒ Object
28 29 30 |
# File 'lib/word2vec/word_vectors.rb', line 28 def [](word) self.get_vector(word) end |
#analogy(pos:, neg:, n: 10) ⇒ Object
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/word2vec/word_vectors.rb', line 48 def analogy(pos:, neg:, n: 10) exclude = pos + neg pos = pos.map { |word| [word, 1.0] } neg = neg.map { |word| [word, -1.0] } mean = [] (pos + neg).each do |word, direction| mean << (NMatrix[*self[word], dtype: :float32] * direction).to_a end mean = NMatrix[*mean, dtype: :float32].mean metrics = NMatrix[*self.vectors, dtype: :float32].dot(mean.transpose) best = metrics.sorted_indices.reverse[0...(n + exclude.size)] exclude_idx = [] exclude.each do |word| if best.include?(self.ix(word)) exclude_idx << best.each_index.select { |i| best[i] == self.ix(word) } end end exclude_idx.flatten.uniq.each do |index| best.delete_at(index) end new_best = best best_metrics = metrics.to_a.flatten.values_at(*new_best) [new_best[0...n], best_metrics[0...n]] end |
#cosine(word, n: 10) ⇒ Object
41 42 43 44 45 46 |
# File 'lib/word2vec/word_vectors.rb', line 41 def cosine(word, n: 10) metrics = NMatrix[*self.vectors, dtype: :float32].dot(NMatrix[self[word], dtype: :float32].transpose) best = metrics.sorted_indices.reverse[1..n] best_metrics = metrics.to_a.values_at(*best).flatten [best, best_metrics] end |
#generate_response(indices, metrics, clusters: true) ⇒ Object
76 77 78 79 80 81 82 83 |
# File 'lib/word2vec/word_vectors.rb', line 76 def generate_response(indices, metrics, clusters: true) if self.clusters && clusters self.vocab.values_at(*indices) .zip(metrics, self.clusters.clusters.values_at(*indices)) else self.vocab.values_at(*indices).zip(metrics) end end |
#get_vector(word) ⇒ Object
36 37 38 39 |
# File 'lib/word2vec/word_vectors.rb', line 36 def get_vector(word) idx = self.ix(word) self.vectors[idx] end |
#include?(word) ⇒ Boolean
32 33 34 |
# File 'lib/word2vec/word_vectors.rb', line 32 def include?(word) raise NotImplementedError end |
#ix(word) ⇒ Object
20 21 22 |
# File 'lib/word2vec/word_vectors.rb', line 20 def ix(word) self.vocab_hash[word] end |
#to_mmap(fname) ⇒ Object
85 86 87 |
# File 'lib/word2vec/word_vectors.rb', line 85 def to_mmap(fname) raise NotImplementedError end |
#word(ix) ⇒ Object
24 25 26 |
# File 'lib/word2vec/word_vectors.rb', line 24 def word(ix) self.vocab[ix] end |