Class: Rubystats::FishersExactTest
- Inherits:
-
Object
- Object
- Rubystats::FishersExactTest
- Defined in:
- lib/viral_seq/math.rb
Instance Method Summary collapse
- #calculate(n11_, n12_, n21_, n22_) ⇒ Object
- #exact(n11, n1_, n_1, n) ⇒ Object
- #hyper(n11) ⇒ Object
- #hyper0(n11i, n1_i, n_1i, ni) ⇒ Object
- #hyper_323(n11, n1_, n_1, n) ⇒ Object
-
#initialize ⇒ FishersExactTest
constructor
A new instance of FishersExactTest.
- #lnbico(n, k) ⇒ Object
- #lnfact(n) ⇒ Object
-
#lngamm(z) ⇒ Object
Reference: “Lanczos, C.
Constructor Details
#initialize ⇒ FishersExactTest
Returns a new instance of FishersExactTest.
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# File 'lib/viral_seq/math.rb', line 202 def initialize @sn11 = 0.0 @sn1_ = 0.0 @sn_1 = 0.0 @sn = 0.0 @sprob = 0.0 @sleft = 0.0 @sright = 0.0 @sless = 0.0 @slarg = 0.0 @left = 0.0 @right = 0.0 @twotail = 0.0 end |
Instance Method Details
#calculate(n11_, n12_, n21_, n22_) ⇒ Object
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# File 'lib/viral_seq/math.rb', line 346 def calculate(n11_,n12_,n21_,n22_) n11_ *= -1 if n11_ < 0 n12_ *= -1 if n12_ < 0 n21_ *= -1 if n21_ < 0 n22_ *= -1 if n22_ < 0 n1_ = n11_ + n12_ n_1 = n11_ + n21_ n = n11_ + n12_ + n21_ + n22_ exact(n11_,n1_,n_1,n) left = @sless right = @slarg twotail = @sleft + @sright twotail = 1 if twotail > 1 values_hash = { :left =>left, :right =>right, :twotail =>twotail } return values_hash end |
#exact(n11, n1_, n_1, n) ⇒ Object
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# File 'lib/viral_seq/math.rb', line 283 def exact(n11,n1_,n_1,n) p = i = j = prob = 0.0 max = n1_ max = n_1 if n_1 < max min = n1_ + n_1 - n min = 0 if min < 0 if min == max @sless = 1 @sright = 1 @sleft = 1 @slarg = 1 return 1 end prob = hyper0(n11,n1_,n_1,n) @sleft = 0 p = hyper(min) i = min + 1 while p < (0.99999999 * prob) @sleft += p p = hyper(i) i += 1 end i -= 1 if p < (1.00000001*prob) @sleft += p else i -= 1 end @sright = 0 p = hyper(max) j = max - 1 while p < (0.99999999 * prob) @sright += p p = hyper(j) j -= 1 end j += 1 if p < (1.00000001*prob) @sright += p else j += 1 end if (i - n11).abs < (j - n11).abs @sless = @sleft @slarg = 1 - @sleft + prob else @sless = 1 - @sright + prob @slarg = @sright end return prob end |
#hyper(n11) ⇒ Object
254 255 256 |
# File 'lib/viral_seq/math.rb', line 254 def hyper(n11) return hyper0(n11, 0, 0, 0) end |
#hyper0(n11i, n1_i, n_1i, ni) ⇒ Object
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# File 'lib/viral_seq/math.rb', line 258 def hyper0(n11i,n1_i,n_1i,ni) if n1_i == 0 and n_1i ==0 and ni == 0 unless n11i % 10 == 0 if n11i == @sn11+1 @sprob *= ((@sn1_ - @sn11)/(n11i.to_f))*((@sn_1 - @sn11)/(n11i.to_f + @sn - @sn1_ - @sn_1)) @sn11 = n11i return @sprob end if n11i == @sn11-1 @sprob *= ((@sn11)/(@sn1_-n11i.to_f))*((@sn11+@sn-@sn1_-@sn_1)/(@sn_1-n11i.to_f)) @sn11 = n11i return @sprob end end @sn11 = n11i else @sn11 = n11i @sn1_ = n1_i @sn_1 = n_1i @sn = ni end @sprob = hyper_323(@sn11,@sn1_,@sn_1,@sn) return @sprob end |
#hyper_323(n11, n1_, n_1, n) ⇒ Object
250 251 252 |
# File 'lib/viral_seq/math.rb', line 250 def hyper_323(n11, n1_, n_1, n) return Math.exp(lnbico(n1_, n11) + lnbico(n-n1_, n_1-n11) - lnbico(n, n_1)) end |
#lnbico(n, k) ⇒ Object
246 247 248 |
# File 'lib/viral_seq/math.rb', line 246 def lnbico(n,k) return lnfact(n) - lnfact(k) - lnfact(n-k) end |
#lnfact(n) ⇒ Object
238 239 240 241 242 243 244 |
# File 'lib/viral_seq/math.rb', line 238 def lnfact(n) if n <= 1 return 0 else return lngamm(n+1) end end |
#lngamm(z) ⇒ Object
Reference: “Lanczos, C. ‘A precision approximation of the gamma function’, J. SIAM Numer. Anal., B, 1, 86-96, 1964.” Translation of Alan Miller’s FORTRAN-implementation See lib.stat.cmu.edu/apstat/245
223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# File 'lib/viral_seq/math.rb', line 223 def lngamm(z) x = 0 x += 0.0000001659470187408462 / (z+7) x += 0.000009934937113930748 / (z+6) x -= 0.1385710331296526 / (z+5) x += 12.50734324009056 / (z+4) x -= 176.6150291498386 / (z+3) x += 771.3234287757674 / (z+2) x -= 1259.139216722289 / (z+1) x += 676.5203681218835 / (z) x += 0.9999999999995183 return(Math.log(x)-5.58106146679532777-z+(z-0.5) * Math.log(z+6.5)) end |