Module: VibeZstd
- Defined in:
- lib/vibe_zstd.rb,
lib/vibe_zstd/version.rb,
lib/vibe_zstd/constants.rb,
ext/vibe_zstd/vibe_zstd.c
Defined Under Namespace
Modules: DictAttachPref, Format, LiteralCompressionMode, ResetDirective, Strategy, ThreadLocal Classes: CCtx, CDict, CompressWriter, DCtx, DDict, DecompressReader, Error
Constant Summary collapse
- VERSION =
"1.0.1"
Class Method Summary collapse
-
.compress(data, **options) ⇒ Object
Convenience method for one-off compression Supports all CCtx#compress options: level, dict, pledged_size.
-
.compress_bound(size) ⇒ Object
VibeZstd.compress_bound(size).
-
.decompress(data, **options) ⇒ Object
Convenience method for one-off decompression Supports all DCtx#decompress options: dict, initial_capacity.
- .default_compression_level ⇒ Object (also: default_level)
-
.dict_header_size(dict_data) ⇒ Object
VibeZstd.dict_header_size(dict_data).
-
.each_skippable_frame(data) ⇒ Object
Iterate over all skippable frames in the data Yields [content, magic_variant, offset] for each skippable frame.
-
.finalize_dictionary(*args) ⇒ Object
For large datasets, consider using a representative subset of samples.
- .find_frame_compressed_size(data) ⇒ Object
-
.frame_content_size(data) ⇒ Object
Get the decompressed content size from a compressed frame Returns nil if size is unknown or data is invalid.
-
.get_dict_id(dict_data) ⇒ Object
VibeZstd.get_dict_id(dict_data).
-
.get_dict_id_from_frame(data) ⇒ Object
VibeZstd.get_dict_id_from_frame(data).
- .max_compression_level ⇒ Object (also: max_level)
- .min_compression_level ⇒ Object (also: min_level)
- .read_skippable_frame(data) ⇒ Object
- .skippable_frame?(data) ⇒ Boolean
-
.train_dict(*args) ⇒ Object
For large datasets, consider training on a representative subset to reduce memory footprint.
-
.train_dict_cover(*args) ⇒ Object
For large datasets, consider training on a representative subset to reduce memory footprint.
-
.train_dict_fast_cover(*args) ⇒ Object
For large datasets, consider training on a representative subset to reduce memory footprint.
-
.version_number ⇒ Object
Module-level version and compression level functions.
- .version_string ⇒ Object
- .write_skippable_frame(*args) ⇒ Object
Class Method Details
.compress(data, **options) ⇒ Object
Convenience method for one-off compression Supports all CCtx#compress options: level, dict, pledged_size
12 13 14 15 |
# File 'lib/vibe_zstd.rb', line 12 def self.compress(data, **) cctx = CCtx.new cctx.compress(data, **) end |
.compress_bound(size) ⇒ Object
VibeZstd.compress_bound(size)
5 6 7 8 9 10 |
# File 'ext/vibe_zstd/frames.c', line 5
static VALUE
vibe_zstd_compress_bound(VALUE self, VALUE size) {
size_t src_size = NUM2SIZET(size);
size_t bound = ZSTD_compressBound(src_size);
return SIZET2NUM(bound);
}
|
.decompress(data, **options) ⇒ Object
Convenience method for one-off decompression Supports all DCtx#decompress options: dict, initial_capacity
19 20 21 22 |
# File 'lib/vibe_zstd.rb', line 19 def self.decompress(data, **) dctx = DCtx.new dctx.decompress(data, **) end |
.default_compression_level ⇒ Object Also known as: default_level
243 244 245 246 247 |
# File 'ext/vibe_zstd/vibe_zstd.c', line 243
static VALUE
vibe_zstd_default_c_level(VALUE self) {
(void)self;
return INT2NUM(ZSTD_defaultCLevel());
}
|
.dict_header_size(dict_data) ⇒ Object
VibeZstd.dict_header_size(dict_data)
529 530 531 532 533 534 535 536 537 538 539 540 |
# File 'ext/vibe_zstd/dict.c', line 529
static VALUE
vibe_zstd_dict_header_size(VALUE self, VALUE dict_data) {
StringValue(dict_data);
size_t header_size = ZDICT_getDictHeaderSize(RSTRING_PTR(dict_data), RSTRING_LEN(dict_data));
// Check for errors
if (ZDICT_isError(header_size)) {
rb_raise(rb_eRuntimeError, "Failed to get dictionary header size: %s", ZDICT_getErrorName(header_size));
}
return SIZET2NUM(header_size);
}
|
.each_skippable_frame(data) ⇒ Object
Iterate over all skippable frames in the data Yields [content, magic_variant, offset] for each skippable frame
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# File 'lib/vibe_zstd.rb', line 32 def self.each_skippable_frame(data) return enum_for(:each_skippable_frame, data) unless block_given? offset = 0 while offset < data.bytesize frame_data = data.byteslice(offset..-1) frame_size = find_frame_compressed_size(frame_data) # Defense: Prevent infinite loop on malformed data # A valid frame must have non-zero size (at minimum: frame header) if frame_size <= 0 raise Error, "Invalid frame: zero or negative size at offset #{offset}" end if skippable_frame?(frame_data) content, magic_variant = read_skippable_frame(frame_data) yield content, magic_variant, offset end offset += frame_size end end |
.finalize_dictionary(*args) ⇒ Object
For large datasets, consider using a representative subset of samples.
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
# File 'ext/vibe_zstd/dict.c', line 433
static VALUE
vibe_zstd_finalize_dictionary(int argc, VALUE* argv, VALUE self) {
VALUE options;
rb_scan_args(argc, argv, ":", &options);
// Layer 1: Validate inputs BEFORE any allocation (fail-fast)
if (NIL_P(options)) {
rb_raise(rb_eArgError, "finalize_dictionary requires keyword arguments");
}
// Get required parameters
VALUE content_val = rb_hash_aref(options, ID2SYM(rb_intern("content")));
VALUE samples_val = rb_hash_aref(options, ID2SYM(rb_intern("samples")));
VALUE max_size_val = rb_hash_aref(options, ID2SYM(rb_intern("max_size")));
if (NIL_P(content_val)) {
rb_raise(rb_eArgError, "content: parameter is required");
}
if (NIL_P(samples_val)) {
rb_raise(rb_eArgError, "samples: parameter is required");
}
if (NIL_P(max_size_val)) {
rb_raise(rb_eArgError, "max_size: parameter is required");
}
// Validate types early
StringValue(content_val);
Check_Type(samples_val, T_ARRAY);
size_t max_size = NUM2SIZET(max_size_val);
long num_samples = RARRAY_LEN(samples_val);
if (num_samples == 0) {
rb_raise(rb_eArgError, "samples array cannot be empty");
}
// Validate all samples are strings and calculate sizes BEFORE allocating
size_t total_samples_size = 0;
for (long i = 0; i < num_samples; i++) {
VALUE sample = rb_ary_entry(samples_val, i);
StringValue(sample); // Validate type early - may raise TypeError
total_samples_size += RSTRING_LEN(sample);
}
// Get optional parameters
VALUE compression_level_val = rb_hash_aref(options, ID2SYM(rb_intern("compression_level")));
VALUE dict_id_val = rb_hash_aref(options, ID2SYM(rb_intern("dict_id")));
// Setup ZDICT_params_t
ZDICT_params_t params;
memset(¶ms, 0, sizeof(params));
params.compressionLevel = NIL_P(compression_level_val) ? 0 : NUM2INT(compression_level_val);
params.dictID = NIL_P(dict_id_val) ? 0 : NUM2UINT(dict_id_val);
params.notificationLevel = 0;
// Layer 2: Allocate late - only after validation passes
dict_training_resources resources = {NULL, NULL, NULL};
resources.sample_sizes = ALLOC_N(size_t, num_samples);
resources.samples_buffer = ALLOC_N(char, total_samples_size);
resources.dict_buffer = ALLOC_N(char, max_size);
// Layer 3: Use rb_ensure for guaranteed cleanup (safety net)
// Build samples buffer - we already validated, so just copy
size_t offset = 0;
for (long i = 0; i < num_samples; i++) {
VALUE sample = rb_ary_entry(samples_val, i);
size_t sample_len = RSTRING_LEN(sample);
resources.sample_sizes[i] = sample_len;
memcpy(resources.samples_buffer + offset, RSTRING_PTR(sample), sample_len);
offset += sample_len;
}
// Finalize the dictionary
size_t dict_size = ZDICT_finalizeDictionary(
resources.dict_buffer, max_size,
RSTRING_PTR(content_val), RSTRING_LEN(content_val),
resources.samples_buffer, resources.sample_sizes, (unsigned)num_samples,
params
);
// Check for errors
if (ZDICT_isError(dict_size)) {
dict_training_cleanup((VALUE)&resources);
rb_raise(rb_eRuntimeError, "Dictionary finalization failed: %s", ZDICT_getErrorName(dict_size));
}
// Create Ruby string with the finalized dictionary
VALUE dict_string = rb_str_new(resources.dict_buffer, dict_size);
// Clean up all resources
dict_training_cleanup((VALUE)&resources);
return dict_string;
}
|
.find_frame_compressed_size(data) ⇒ Object
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# File 'ext/vibe_zstd/frames.c', line 108
static VALUE
vibe_zstd_find_frame_compressed_size(VALUE self, VALUE data) {
(void)self;
StringValue(data);
// Returns compressed size of first complete frame (including header/checksum)
// Useful for splitting concatenated frames in multi-frame archives
size_t frame_size = ZSTD_findFrameCompressedSize(RSTRING_PTR(data), RSTRING_LEN(data));
if (ZSTD_isError(frame_size)) {
rb_raise(rb_eRuntimeError, "Failed to find frame size: %s", ZSTD_getErrorName(frame_size));
}
return SIZET2NUM(frame_size);
}
|
.frame_content_size(data) ⇒ Object
Get the decompressed content size from a compressed frame Returns nil if size is unknown or data is invalid
26 27 28 |
# File 'lib/vibe_zstd.rb', line 26 def self.frame_content_size(data) DCtx.frame_content_size(data) end |
.get_dict_id(dict_data) ⇒ Object
VibeZstd.get_dict_id(dict_data)
412 413 414 415 416 417 |
# File 'ext/vibe_zstd/dict.c', line 412
static VALUE
vibe_zstd_get_dict_id(VALUE self, VALUE dict_data) {
StringValue(dict_data);
unsigned dict_id = ZDICT_getDictID(RSTRING_PTR(dict_data), RSTRING_LEN(dict_data));
return UINT2NUM(dict_id);
}
|
.get_dict_id_from_frame(data) ⇒ Object
VibeZstd.get_dict_id_from_frame(data)
421 422 423 424 425 426 |
# File 'ext/vibe_zstd/dict.c', line 421
static VALUE
vibe_zstd_get_dict_id_from_frame(VALUE self, VALUE data) {
StringValue(data);
unsigned dict_id = ZSTD_getDictID_fromFrame(RSTRING_PTR(data), RSTRING_LEN(data));
return UINT2NUM(dict_id);
}
|
.max_compression_level ⇒ Object Also known as: max_level
237 238 239 240 241 |
# File 'ext/vibe_zstd/vibe_zstd.c', line 237
static VALUE
vibe_zstd_max_c_level(VALUE self) {
(void)self;
return INT2NUM(ZSTD_maxCLevel());
}
|
.min_compression_level ⇒ Object Also known as: min_level
231 232 233 234 235 |
# File 'ext/vibe_zstd/vibe_zstd.c', line 231
static VALUE
vibe_zstd_min_c_level(VALUE self) {
(void)self;
return INT2NUM(ZSTD_minCLevel());
}
|
.read_skippable_frame(data) ⇒ Object
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# File 'ext/vibe_zstd/frames.c', line 64
static VALUE
vibe_zstd_read_skippable_frame(VALUE self, VALUE data) {
(void)self;
StringValue(data);
if (!ZSTD_isSkippableFrame(RSTRING_PTR(data), RSTRING_LEN(data))) {
rb_raise(rb_eArgError, "data is not a skippable frame (%zu bytes provided)", RSTRING_LEN(data));
}
const char* src = RSTRING_PTR(data);
size_t src_size = RSTRING_LEN(data);
// Content size is in bytes 4-7 (little-endian uint32)
if (src_size < 8) {
rb_raise(rb_eArgError, "skippable frame too small (%zu bytes, minimum 8 bytes required)", src_size);
}
uint32_t content_size;
memcpy(&content_size, src + 4, 4);
VALUE result = rb_str_buf_new(content_size);
unsigned magic_variant;
size_t bytes_read = ZSTD_readSkippableFrame(
RSTRING_PTR(result),
content_size,
&magic_variant,
src,
src_size
);
if (ZSTD_isError(bytes_read)) {
rb_raise(rb_eRuntimeError, "Failed to read skippable frame: %s", ZSTD_getErrorName(bytes_read));
}
rb_str_set_len(result, bytes_read);
// Return [content, magic_variant]
VALUE result_ary = rb_ary_new_capa(2);
rb_ary_push(result_ary, result);
rb_ary_push(result_ary, UINT2NUM(magic_variant));
return result_ary;
}
|
.skippable_frame?(data) ⇒ Boolean
12 13 14 15 16 17 18 |
# File 'ext/vibe_zstd/frames.c', line 12
static VALUE
vibe_zstd_skippable_frame_p(VALUE self, VALUE data) {
(void)self;
StringValue(data);
unsigned result = ZSTD_isSkippableFrame(RSTRING_PTR(data), RSTRING_LEN(data));
return result ? Qtrue : Qfalse;
}
|
.train_dict(*args) ⇒ Object
For large datasets, consider training on a representative subset to reduce memory footprint.
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'ext/vibe_zstd/dict.c', line 133
static VALUE
vibe_zstd_train_dict(int argc, VALUE* argv, VALUE self) {
VALUE samples, options;
rb_scan_args(argc, argv, "1:", &samples, &options);
// Layer 1: Validate inputs BEFORE any allocation (fail-fast)
Check_Type(samples, T_ARRAY);
long num_samples = RARRAY_LEN(samples);
if (num_samples == 0) {
rb_raise(rb_eArgError, "samples array cannot be empty");
}
// Validate all samples are strings and calculate sizes BEFORE allocating
size_t total_samples_size = 0;
for (long i = 0; i < num_samples; i++) {
VALUE sample = rb_ary_entry(samples, i);
StringValue(sample); // Validate type early - may raise TypeError
total_samples_size += RSTRING_LEN(sample);
}
// Parse options
VALUE max_dict_size_val = Qnil;
if (!NIL_P(options)) {
max_dict_size_val = rb_hash_aref(options, ID2SYM(rb_intern("max_dict_size")));
}
// Default max dictionary size is 112KB (zstd default)
size_t max_dict_size = NIL_P(max_dict_size_val) ? (112 * 1024) : NUM2SIZET(max_dict_size_val);
// Layer 2: Allocate late - only after validation passes
dict_training_resources resources = {NULL, NULL, NULL};
resources.sample_sizes = ALLOC_N(size_t, num_samples);
resources.samples_buffer = ALLOC_N(char, total_samples_size);
resources.dict_buffer = ALLOC_N(char, max_dict_size);
// Layer 3: Use rb_ensure for guaranteed cleanup (safety net)
// Build samples buffer - we already validated, so just copy
size_t offset = 0;
for (long i = 0; i < num_samples; i++) {
VALUE sample = rb_ary_entry(samples, i);
size_t sample_len = RSTRING_LEN(sample);
resources.sample_sizes[i] = sample_len;
memcpy(resources.samples_buffer + offset, RSTRING_PTR(sample), sample_len);
offset += sample_len;
}
// Train the dictionary
size_t dict_size = ZDICT_trainFromBuffer(
resources.dict_buffer, max_dict_size,
resources.samples_buffer, resources.sample_sizes, (unsigned)num_samples
);
// Check for errors
if (ZDICT_isError(dict_size)) {
dict_training_cleanup((VALUE)&resources);
rb_raise(rb_eRuntimeError, "Dictionary training failed: %s", ZDICT_getErrorName(dict_size));
}
// Create Ruby string with the trained dictionary
VALUE dict_string = rb_str_new(resources.dict_buffer, dict_size);
// Clean up all resources
dict_training_cleanup((VALUE)&resources);
return dict_string;
}
|
.train_dict_cover(*args) ⇒ Object
For large datasets, consider training on a representative subset to reduce memory footprint.
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# File 'ext/vibe_zstd/dict.c', line 205
static VALUE
vibe_zstd_train_dict_cover(int argc, VALUE* argv, VALUE self) {
VALUE samples, options;
rb_scan_args(argc, argv, "1:", &samples, &options);
// Layer 1: Validate inputs BEFORE any allocation (fail-fast)
Check_Type(samples, T_ARRAY);
long num_samples = RARRAY_LEN(samples);
if (num_samples == 0) {
rb_raise(rb_eArgError, "samples array cannot be empty");
}
// Validate all samples are strings and calculate sizes BEFORE allocating
size_t total_samples_size = 0;
for (long i = 0; i < num_samples; i++) {
VALUE sample = rb_ary_entry(samples, i);
StringValue(sample); // Validate type early - may raise TypeError
total_samples_size += RSTRING_LEN(sample);
}
// Initialize COVER parameters with defaults
ZDICT_cover_params_t params;
memset(¶ms, 0, sizeof(params));
params.splitPoint = 1.0; // Default split point
// Parse options
if (!NIL_P(options)) {
VALUE v;
v = rb_hash_aref(options, ID2SYM(rb_intern("k")));
if (!NIL_P(v)) params.k = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("d")));
if (!NIL_P(v)) params.d = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("steps")));
if (!NIL_P(v)) params.steps = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("split_point")));
if (!NIL_P(v)) params.splitPoint = NUM2DBL(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("shrink_dict")));
if (!NIL_P(v)) params.shrinkDict = RTEST(v) ? 1 : 0;
v = rb_hash_aref(options, ID2SYM(rb_intern("shrink_dict_max_regression")));
if (!NIL_P(v)) params.shrinkDictMaxRegression = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("nb_threads")));
if (!NIL_P(v)) params.nbThreads = NUM2UINT(v);
}
// Get max_dict_size (default 112KB)
VALUE max_dict_size_val = Qnil;
if (!NIL_P(options)) {
max_dict_size_val = rb_hash_aref(options, ID2SYM(rb_intern("max_dict_size")));
}
size_t max_dict_size = NIL_P(max_dict_size_val) ? (112 * 1024) : NUM2SIZET(max_dict_size_val);
params.zParams.compressionLevel = 0; // Use default compression level
// Layer 2: Allocate late - only after validation passes
dict_training_resources resources = {NULL, NULL, NULL};
resources.sample_sizes = ALLOC_N(size_t, num_samples);
resources.samples_buffer = ALLOC_N(char, total_samples_size);
resources.dict_buffer = ALLOC_N(char, max_dict_size);
// Layer 3: Use rb_ensure for guaranteed cleanup (safety net)
// Build samples buffer - we already validated, so just copy
size_t offset = 0;
for (long i = 0; i < num_samples; i++) {
VALUE sample = rb_ary_entry(samples, i);
size_t sample_len = RSTRING_LEN(sample);
resources.sample_sizes[i] = sample_len;
memcpy(resources.samples_buffer + offset, RSTRING_PTR(sample), sample_len);
offset += sample_len;
}
// Train the dictionary using COVER algorithm
size_t dict_size = ZDICT_trainFromBuffer_cover(
resources.dict_buffer, max_dict_size,
resources.samples_buffer, resources.sample_sizes, (unsigned)num_samples,
params
);
// Check for errors
if (ZDICT_isError(dict_size)) {
dict_training_cleanup((VALUE)&resources);
rb_raise(rb_eRuntimeError, "Dictionary training failed: %s", ZDICT_getErrorName(dict_size));
}
// Create Ruby string with the trained dictionary
VALUE dict_string = rb_str_new(resources.dict_buffer, dict_size);
// Clean up all resources
dict_training_cleanup((VALUE)&resources);
return dict_string;
}
|
.train_dict_fast_cover(*args) ⇒ Object
For large datasets, consider training on a representative subset to reduce memory footprint.
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
# File 'ext/vibe_zstd/dict.c', line 308
static VALUE
vibe_zstd_train_dict_fast_cover(int argc, VALUE* argv, VALUE self) {
VALUE samples, options;
rb_scan_args(argc, argv, "1:", &samples, &options);
// Layer 1: Validate inputs BEFORE any allocation (fail-fast)
Check_Type(samples, T_ARRAY);
long num_samples = RARRAY_LEN(samples);
if (num_samples == 0) {
rb_raise(rb_eArgError, "samples array cannot be empty");
}
// Validate all samples are strings and calculate sizes BEFORE allocating
size_t total_samples_size = 0;
for (long i = 0; i < num_samples; i++) {
VALUE sample = rb_ary_entry(samples, i);
StringValue(sample); // Validate type early - may raise TypeError
total_samples_size += RSTRING_LEN(sample);
}
// Initialize COVER parameters with defaults
ZDICT_fastCover_params_t params;
memset(¶ms, 0, sizeof(params));
params.splitPoint = 1.0; // Default split point
// Parse options
if (!NIL_P(options)) {
VALUE v;
v = rb_hash_aref(options, ID2SYM(rb_intern("k")));
if (!NIL_P(v)) params.k = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("d")));
if (!NIL_P(v)) params.d = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("f")));
if (!NIL_P(v)) params.f = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("split_point")));
if (!NIL_P(v)) params.splitPoint = NUM2DBL(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("accel")));
if (!NIL_P(v)) params.accel = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("shrink_dict")));
if (!NIL_P(v)) params.shrinkDict = RTEST(v) ? 1 : 0;
v = rb_hash_aref(options, ID2SYM(rb_intern("shrink_dict_max_regression")));
if (!NIL_P(v)) params.shrinkDictMaxRegression = NUM2UINT(v);
v = rb_hash_aref(options, ID2SYM(rb_intern("nb_threads")));
if (!NIL_P(v)) params.nbThreads = NUM2UINT(v);
}
// Get max_dict_size (default 112KB)
VALUE max_dict_size_val = Qnil;
if (!NIL_P(options)) {
max_dict_size_val = rb_hash_aref(options, ID2SYM(rb_intern("max_dict_size")));
}
size_t max_dict_size = NIL_P(max_dict_size_val) ? (112 * 1024) : NUM2SIZET(max_dict_size_val);
params.zParams.compressionLevel = 0; // Use default compression level
// Layer 2: Allocate late - only after validation passes
dict_training_resources resources = {NULL, NULL, NULL};
resources.sample_sizes = ALLOC_N(size_t, num_samples);
resources.samples_buffer = ALLOC_N(char, total_samples_size);
resources.dict_buffer = ALLOC_N(char, max_dict_size);
// Layer 3: Use rb_ensure for guaranteed cleanup (safety net)
// Build samples buffer - we already validated, so just copy
size_t offset = 0;
for (long i = 0; i < num_samples; i++) {
VALUE sample = rb_ary_entry(samples, i);
size_t sample_len = RSTRING_LEN(sample);
resources.sample_sizes[i] = sample_len;
memcpy(resources.samples_buffer + offset, RSTRING_PTR(sample), sample_len);
offset += sample_len;
}
// Train the dictionary using fast COVER algorithm
size_t dict_size = ZDICT_trainFromBuffer_fastCover(
resources.dict_buffer, max_dict_size,
resources.samples_buffer, resources.sample_sizes, (unsigned)num_samples,
params
);
// Check for errors
if (ZDICT_isError(dict_size)) {
dict_training_cleanup((VALUE)&resources);
rb_raise(rb_eRuntimeError, "Dictionary training failed: %s", ZDICT_getErrorName(dict_size));
}
// Create Ruby string with the trained dictionary
VALUE dict_string = rb_str_new(resources.dict_buffer, dict_size);
// Clean up all resources
dict_training_cleanup((VALUE)&resources);
return dict_string;
}
|
.version_number ⇒ Object
Module-level version and compression level functions
219 220 221 222 223 |
# File 'ext/vibe_zstd/vibe_zstd.c', line 219
static VALUE
vibe_zstd_version_number(VALUE self) {
(void)self;
return UINT2NUM(ZSTD_versionNumber());
}
|
.version_string ⇒ Object
225 226 227 228 229 |
# File 'ext/vibe_zstd/vibe_zstd.c', line 225
static VALUE
vibe_zstd_version_string(VALUE self) {
(void)self;
return rb_str_new_cstr(ZSTD_versionString());
}
|
.write_skippable_frame(*args) ⇒ Object
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'ext/vibe_zstd/frames.c', line 20
static VALUE
vibe_zstd_write_skippable_frame(int argc, VALUE *argv, VALUE self) {
(void)self;
VALUE data, options;
rb_scan_args(argc, argv, "11", &data, &options);
StringValue(data);
unsigned magic_variant = 0; // Default to 0
if (!NIL_P(options)) {
Check_Type(options, T_HASH);
VALUE magic_num = rb_hash_aref(options, ID2SYM(rb_intern("magic_number")));
if (!NIL_P(magic_num)) {
magic_variant = NUM2UINT(magic_num);
if (magic_variant > 15) {
rb_raise(rb_eArgError, "magic_number %u out of bounds (valid: 0-15)", magic_variant);
}
}
}
const char* src = RSTRING_PTR(data);
size_t src_size = RSTRING_LEN(data);
// Skippable frame structure: 4-byte magic (0x184D2A5X) + 4-byte size + content
// Decoders skip these frames, allowing custom metadata/padding
size_t frame_size = 8 + src_size;
VALUE result = rb_str_buf_new(frame_size);
size_t written = ZSTD_writeSkippableFrame(
RSTRING_PTR(result),
frame_size,
src,
src_size,
magic_variant
);
if (ZSTD_isError(written)) {
rb_raise(rb_eRuntimeError, "Failed to write skippable frame: %s", ZSTD_getErrorName(written));
}
rb_str_set_len(result, written);
return result;
}
|