Class: Vectorsearch::Milvus
Constant Summary
Constants inherited from Base
Base::DEFAULT_COHERE_DIMENSION, Base::DEFAULT_METRIC, Base::DEFAULT_OPENAI_DIMENSION, Base::LLMS
Instance Attribute Summary
Attributes inherited from Base
#client, #index_name, #llm, #llm_api_key
Instance Method Summary collapse
- #add_texts(texts:) ⇒ Object
- #ask(question:) ⇒ Object
-
#create_default_schema ⇒ Hash
Create default schema.
-
#initialize(url:, api_key: nil, index_name:, llm:, llm_api_key:) ⇒ Milvus
constructor
A new instance of Milvus.
- #similarity_search(query:, k: 4) ⇒ Object
- #similarity_search_by_vector(embedding:, k: 4) ⇒ Object
Methods inherited from Base
#generate_completion, #generate_embedding, #generate_prompt
Constructor Details
#initialize(url:, api_key: nil, index_name:, llm:, llm_api_key:) ⇒ Milvus
Returns a new instance of Milvus.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
# File 'lib/vectorsearch/milvus.rb', line 7 def initialize( url:, api_key: nil, index_name:, llm:, llm_api_key: ) @client = ::Milvus::Client.new( url: url ) @index_name = index_name super(llm: llm, llm_api_key: llm_api_key) end |
Instance Method Details
#add_texts(texts:) ⇒ Object
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
# File 'lib/vectorsearch/milvus.rb', line 22 def add_texts( texts: ) client.entities.insert( collection_name: index_name, num_rows: texts.count, fields_data: [ { field_name: "content", type: ::Milvus::DATA_TYPES["varchar"], field: texts }, { field_name: "vectors", type: ::Milvus::DATA_TYPES["binary_vector"], field: texts.map { |text| (text: text) } } ] ) end |
#ask(question:) ⇒ Object
107 108 109 |
# File 'lib/vectorsearch/milvus.rb', line 107 def ask(question:) raise NotImplementedError end |
#create_default_schema ⇒ Hash
Create default schema
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
# File 'lib/vectorsearch/milvus.rb', line 44 def create_default_schema client.collections.create( auto_id: true, collection_name: index_name, description: "Default schema created by Vectorsearch", fields: [ { name: "id", is_primary_key: true, autoID: true, data_type: ::Milvus::DATA_TYPES["int64"] }, { name: "content", is_primary_key: false, data_type: ::Milvus::DATA_TYPES["varchar"], type_params: [ { key: "max_length", value: "32768" # Largest allowed value } ] }, { name: "vectors", data_type: ::Milvus::DATA_TYPES["binary_vector"], is_primary_key: false, type_params: [ { key: "dim", value: default_dimension.to_s } ] } ] ) end |
#similarity_search(query:, k: 4) ⇒ Object
80 81 82 83 84 85 86 87 88 89 90 |
# File 'lib/vectorsearch/milvus.rb', line 80 def similarity_search( query:, k: 4 ) = (text: query) similarity_search_by_vector( embedding: , k: k ) end |
#similarity_search_by_vector(embedding:, k: 4) ⇒ Object
92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
# File 'lib/vectorsearch/milvus.rb', line 92 def similarity_search_by_vector( embedding:, k: 4 ) client.search( collection_name: index_name, top_k: k.to_s, vectors: [ ], dsl_type: 1, params: "{\"nprobe\": 10}", anns_field: "content", metric_type: "L2" ) end |