Module: Unodos::Solver

Defined in:
lib/unodos/solver.rb

Constant Summary collapse

TOLERANCE =
1e-12
NAMED_BASES =
[
  Unodos::NamedBase.new('1') { |_| 1 },
  Unodos::NamedBase.new('n') { |n| n },
  Unodos::NamedBase.new('n**2') { |n| n**2 },
  Unodos::NamedBase.new('n**3') { |n| n**3 },
  Unodos::NamedBase.new('n**4') { |n| n**4 },
  Unodos::NamedBase.new('n**5') { |n| n**5 },
  Unodos::NamedBase.new('2**n') { |n| 2**n },
]

Class Method Summary collapse

Class Method Details

.find_solve(vectors, bvector, &block) ⇒ Object



73
74
75
76
77
78
79
# File 'lib/unodos/solver.rb', line 73

def self.find_solve(vectors, bvector, &block)
  (1...vectors.size).each do |i|
    least_square_solve [vectors[0], vectors[i]], bvector do |vs, pos|
      block.call vs, pos.map { |c| c == 1 ? i : 0 }
    end
  end
end

.least_square_solve(vectors, bvector, &block) ⇒ Object



94
95
96
97
98
99
100
101
102
103
104
105
# File 'lib/unodos/solver.rb', line 94

def self.least_square_solve(vectors, bvector, &block)
  mat = Matrix[*vectors.transpose]
  tmat = mat.transpose
  m = tmat * mat
  b = tmat * Vector[*bvector]
  vs = lup_solve m.lup, b.to_a
  return unless vs
  max_diff = bvector.each_with_index.map do |bv, i|
    (vectors.zip(vs).sum { |a, v| v * a[i] } - bv).abs
  end.max
  block.call vs, (0...vectors.size).to_a if max_diff < TOLERANCE
end

.lup_solve(lup, b) ⇒ Object



14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# File 'lib/unodos/solver.rb', line 14

def self.lup_solve(lup, b)
  size = b.size
  m = b.values_at(*lup.pivots)
  mat_l = lup.l
  mat_u = lup.u
  size.times do |k|
    (k + 1).upto(size - 1) do |i|
      m[i] -= m[k] * mat_l[i, k]
    end
  end
  (size - 1).downto(0) do |k|
    next if m[k] == 0
    return nil if mat_u[k, k].zero?
    m[k] = m[k].quo mat_u[k, k]
    k.times do |i|
      m[i] -= m[k] * mat_u[i, k]
    end
  end
  m
end

.match_vector(vector, bvector) ⇒ Object



66
67
68
69
70
71
# File 'lib/unodos/solver.rb', line 66

def self.match_vector(vector, bvector)
  v, b = vector.zip(bvector).max_by { |a,| a.abs }
  a = b.quo v
  err = vector.zip(bvector).map { |v, b| (v * a - b).abs }.max
  a if err < TOLERANCE
end

.recursive_solve(vectors, bvector, first_required, &block) ⇒ Object



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# File 'lib/unodos/solver.rb', line 107

def self.recursive_solve(vectors, bvector, first_required, &block)
  return least_square_solve vectors, bvector, &block if vectors.size < bvector.size
  size = vectors.size
  out_size = bvector.size
  skip_size = size - out_size
  lup = Matrix[*vectors.transpose].lup
  mat_l = lup.l
  mat_u = lup.u.to_a
  bvector = bvector.values_at(*lup.pivots)
  out_size.times do |k|
    (k + 1).upto(out_size - 1) do |i|
      bvector[i] -= bvector[k] * mat_l[i, k]
    end
  end
  solved = lambda do |u, selected|
    b = bvector.dup
    (selected.size - 1).downto 0 do |i|
      j = selected[i]
      next if b[i] == 0
      return if u[i][j] == 0
      b[i] = b[i].quo u[i][j]
      i.times do |k|
        b[k] -= b[i] * u[k][j]
      end
    end
    block.call b, selected
  end
  solve = lambda do |u, selected, index|
    return solved.call u, selected if selected.size == out_size
    j = selected.size
    restore_index = (j .. [index, out_size - 1].min).max_by do |k|
      u[k][index].abs
    end
    u[j], u[restore_index] = u[restore_index], u[j]
    bvector[j], bvector[restore_index] = bvector[restore_index], bvector[j]
    restore = (j + 1 .. [index, out_size - 1].min).map do |k|
      v = u[j][index] == 0 ? 0 : u[k][index].quo(u[j][index])
      (index + 1 ... size).each do |l|
        u[k][l] -= v * u[j][l]
      end
      bvector[k] -= v * bvector[j]
      [k, v]
    end
    selected.push index
    solve.call u, selected, index + 1
    selected.pop
    restore.reverse_each do |k, v|
      (index + 1 ... size).each do |l|
        u[k][l] += v * u[j][l]
      end
      bvector[k] += v * bvector[j]
    end
    u[j], u[restore_index] = u[restore_index], u[j]
    bvector[j], bvector[restore_index] = bvector[restore_index], bvector[j]
    solve.call u, selected, index + 1 if size - index > out_size - selected.size
  end
  if first_required
    solve.call mat_u, [0], 1
  else
    solve.call mat_u, [], 0
  end
end

.select_solve(vectors, bvector, max_items, first_required, &block) ⇒ Object



81
82
83
84
85
86
87
88
89
90
91
92
# File 'lib/unodos/solver.rb', line 81

def self.select_solve(vectors, bvector, max_items, first_required, &block)
  if first_required && max_items == 1
    a = match_vector vectors[0], bvector
    block.call [a], [0] if a
  elsif vectors.size < bvector.size
    least_square_solve vectors, bvector, &block
  elsif first_required && max_items == 2
    find_solve vectors, bvector, &block
  elsif
    recursive_solve vectors, bvector, first_required, &block
  end
end

.solve(list, differential_level, min_cost) ⇒ Object



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# File 'lib/unodos/solver.rb', line 35

def self.solve(list, differential_level, min_cost)
  base_cost = differential_level
  max_items = min_cost - base_cost - 1
  return nil if max_items <= 0
  result = nil
  vector_max_bases = NAMED_BASES.map do |base|
    vector = (differential_level..list.size-1).map do |i|
      base.proc.call(i)
    end
    [vector, vector.map(&:abs).max, base]
  end
  if differential_level > 0
    (1..differential_level).each do |level|
      vector = list.take(list.size - level).drop(differential_level - level)
      vector_max_bases.unshift [vector, vector.map(&:abs).max, Unodos::DifferentialBase.new(level)]
    end
    list = list.drop differential_level
  end
  select_solve vector_max_bases.map(&:first), list, max_items, differential_level > 0 do |vs, pos|
    rs = vector_max_bases.values_at(*pos).zip(vs)
    rs.each { |r| r[1] = 0 if (r[0][1] * r[1]).abs < TOLERANCE }
    next if differential_level > 0 && rs[0][1] == 0
    cost = rs.sum { |(_, _, base), v| v == 0 ? 0 : 1 } + base_cost
    if cost < min_cost
      min_cost = cost
      result = rs
    end
  end
  [min_cost, result] if result
end