Class: UnitQuaternion
- Inherits:
-
Quaternion
- Object
- Quaternion
- UnitQuaternion
- Defined in:
- lib/unit_quaternion.rb
Class Method Summary collapse
-
.fromAngleAxis(angle, axis) ⇒ Object
Initializes a quaternion from the angle-axis representation of a rotation.
-
.fromEuler(theta1, theta2, theta3, axes) ⇒ Object
Initializes a quaternion from a set of 3 Euler angles.
-
.fromRotationMatrix(mat) ⇒ Object
Initializes a quaternion from a rotation matrix.
Instance Method Summary collapse
-
#getAngleAxis ⇒ Object
Returns the angle-axis representation of the rotation represented by the quaternion.
-
#getEuler(axes) ⇒ Object
Returns the Euler angles corresponding to this quaternion.
-
#getRotationMatrix ⇒ Object
Returns the rotation matrix corresponding to this quaternion.
-
#initialize(*args) ⇒ UnitQuaternion
constructor
Creates a new UnitQuaternion from 4 values.
-
#inverse ⇒ Object
Returns the inverse of the quaternion.
-
#set(w, x, y, z) ⇒ Object
Set the quaternion’s values.
-
#setAngleAxis(angle, axis) ⇒ Object
Sets the values of the quaternion from the angle-axis representation of a rotation.
-
#setEuler(theta1, theta2, theta3, axes) ⇒ Object
Sets the values of the quaternion from a set of 3 Euler angles.
-
#setRotationMatrix(mat) ⇒ Object
Sets the values of the quaternion from a rotation matrix.
-
#transform(vec) ⇒ Object
Transforms a vector by applying to it the rotation represented by this quaternion, and returns the result.
Methods inherited from Quaternion
#*, #+, #-, #-@, #/, #==, #coerce, #conjugate, #get, #norm, #normalized, #to_s
Constructor Details
#initialize(*args) ⇒ UnitQuaternion
Creates a new UnitQuaternion from 4 values. If the resulting quaternion does not have magnitude 1, it will be normalized. If no arguments are provided, creates the quaternion (1, 0, 0, 0).
17 18 19 20 21 22 23 24 25 |
# File 'lib/unit_quaternion.rb', line 17 def initialize(*args) if args.length() == 4 set(*args) elsif args.length() == 0 super(1, 0, 0, 0) else raise(ArgumentError, "wrong number of arguments (must be 0 or 4)") end end |
Class Method Details
.fromAngleAxis(angle, axis) ⇒ Object
Initializes a quaternion from the angle-axis representation of a rotation. The sense of the rotation is determined according to the right-hand rule.
Params:
angle-
A scalar representing the angle of the rotation (in radians)
axis-
A vector representing the axis of rotation (need not be a unit vector)
34 35 36 37 38 39 40 |
# File 'lib/unit_quaternion.rb', line 34 def self.fromAngleAxis(angle, axis) # intializes a quaternion from the angle-axis representation of a # rotation q = UnitQuaternion.new() q.setAngleAxis(angle, axis) return q end |
.fromEuler(theta1, theta2, theta3, axes) ⇒ Object
Initializes a quaternion from a set of 3 Euler angles.
Params:
theta1-
The angle of rotation about the first axis
theta2-
The angle of rotation about the second axis
theta3-
The angle of rotation about the third axis
axes-
A string of 3 letters (‘X/x’, ‘Y/y’, or ‘Z/z’) representing the three axes of rotation. Must be all uppercase or all lowercase. If the string is uppercase, the rotations are performed about the inertial axes. If the string is lowercase, the rotations are performed about the body-fixed axes. Repeated axes are allowed, but not in succession (for example, ‘xyx’ is fine, but ‘xxy’ is not allowed).
49 50 51 52 53 |
# File 'lib/unit_quaternion.rb', line 49 def self.fromEuler(theta1, theta2, theta3, axes) q = UnitQuaternion.new() q.setEuler(theta1, theta2, theta3, axes) return q end |
.fromRotationMatrix(mat) ⇒ Object
Initializes a quaternion from a rotation matrix
Params:
mat-
A 3x3 orthonormal matrix.
59 60 61 62 63 |
# File 'lib/unit_quaternion.rb', line 59 def self.fromRotationMatrix(mat) q = UnitQuaternion.new() q.setRotationMatrix(mat) return q end |
Instance Method Details
#getAngleAxis ⇒ Object
Returns the angle-axis representation of the rotation represented by the quaternion.
Returns:
angle-
A scalar representing the angle of rotation (in radians)
axis-
A unit vector representing the axis of rotation
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# File 'lib/unit_quaternion.rb', line 109 def getAngleAxis # return the angle-axis representation of the rotation contained in # this quaternion angle = 2*Math.acos(@beta0) # if sin(theta/2) = 0, then theta = 2*n*PI, where n is any integer, # which means that the object has performed a complete rotation, and # any axis will do if Math.sin(angle/2).abs() < 1e-15 axis = Vector[1, 0, 0] else axis = @beta_s / Math.sin(angle/2) end return angle, axis end |
#getEuler(axes) ⇒ Object
Returns the Euler angles corresponding to this quaternion.
Params:
axes-
A string of 3 letters (‘X/x’, ‘Y/y’, or ‘Z/z’) representing the three axes of rotation. Must be all uppercase or all lowercase. If the string is uppercase, the rotations are performed about the inertial axes. If the string is lowercase, the rotations are performed about the body-fixed axes. Repeated axes are allowed, but not in succession (for example, ‘xyx’ is fine, but ‘xxy’ is not allowed).
Returns:
theta1-
The angle of rotation about the first axis
theta2-
The angle of rotation about the second axis
theta3-
The angle of rotation about the third axis
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# File 'lib/unit_quaternion.rb', line 168 def getEuler(axes) # Returns the Euler angles about the specified axes. The axes should # be specified as a string, and can be any permutation (with # replacement) of 'X', 'Y', and 'Z', as long as no letter is adjacent # to itself (for example, 'XYX' is valid, but 'XXY' is not). # If the axes are uppercase, this function returns the angles about # the global axes. If they are lowercase, this function returns the # angles about the body-fixed axes. # # This method implements Shoemake's algorithm for finding the Euler # angles from a rotation matrix, found in Graphics Gems IV (pg. 222). if axes.length() != 3 raise(ArgumentError, "Exactly 3 axes must be specified in order to " + "calculate the Euler angles") end if axes == axes.upcase() # get angles about global axes static = true elsif axes == axes.downcase() # get angles about body-fixes axes static = false axes = axes.reverse() else raise(ArgumentError, "Axes must either be all uppercase or all " + "lowercase") end axes = axes.upcase() if axes[0] == axes[2] same = true end if not ('XYZ'.include?(axes[0]) and 'XYZ'.include?(axes[1]) and 'XYZ'.include?(axes[2]) ) raise(ArgumentError, 'Axes can only be X/x, Y/y, or Z/z') end if axes.include?('XX') or axes.include?('YY') or axes.include?('ZZ') raise(ArgumentError, "Cannot rotate about the same axis twice in " + "succession") end # true if the axes specify a right-handed coordinate system, false # otherwise rh = isRightHanded(axes.upcase()) p_mat_rows = Array.new() unused = [ 'X', 'Y', 'Z' ] axes[0..1].each_char() do |a| if a == 'X' p_mat_rows << getUnitVector(a) elsif a == 'Y' p_mat_rows << getUnitVector(a) elsif a == 'Z' p_mat_rows << getUnitVector(a) end unused.delete(a) end p_mat_rows << getUnitVector(unused[0]) p_mat = Matrix.rows(p_mat_rows) rot_mat = p_mat * getRotationMatrix() * p_mat.transpose() theta1, theta2, theta3 = parseMatrix(rot_mat, same) if not static theta1, theta3 = theta3, theta1 end if not rh theta1, theta2, theta3 = -theta1, -theta2, -theta3 end return theta1, theta2, theta3 end |
#getRotationMatrix ⇒ Object
Returns the rotation matrix corresponding to this quaternion.
265 266 267 268 269 270 271 272 273 274 275 276 |
# File 'lib/unit_quaternion.rb', line 265 def getRotationMatrix # returns the rotation matrix corresponding to this quaternion return Matrix[ [ @beta0**2 + @beta_s[0]**2 - @beta_s[1]**2 - @beta_s[2]**2, 2*(@beta_s[0]*@beta_s[1] - @beta0*@beta_s[2]), 2*(@beta_s[0]*@beta_s[2] + @beta0*@beta_s[1]) ], [ 2*(@beta_s[0]*@beta_s[1] + @beta0*@beta_s[2]), @beta0**2 - @beta_s[0]**2 + @beta_s[1]**2 - @beta_s[2]**2, 2*(@beta_s[1]*@beta_s[2] - @beta0*@beta_s[0]) ], [ 2*(@beta_s[0]*@beta_s[2] - @beta0*@beta_s[1]), 2*(@beta0*@beta_s[0] + @beta_s[1]*@beta_s[2]), @beta0**2 - @beta_s[0]**2 - @beta_s[1]**2 + @beta_s[2]**2 ] ] end |
#inverse ⇒ Object
Returns the inverse of the quaternion
288 289 290 291 292 |
# File 'lib/unit_quaternion.rb', line 288 def inverse result = UnitQuaternion.new result.set(@beta0, *(-1*@beta_s)) return result end |
#set(w, x, y, z) ⇒ Object
Set the quaternion’s values. If the 4 arguments do not form an unit quaternion, the resulting quaternion is normalized.
Params:
w-
the real part of the quaterion
x-
the i-component
y-
the j-component
z-
the k-component
73 74 75 76 77 |
# File 'lib/unit_quaternion.rb', line 73 def set(w, x, y, z) # sets the values of the quaternion super(w, x, y, z) @beta0, @beta_s = normalized().get() end |
#setAngleAxis(angle, axis) ⇒ Object
Sets the values of the quaternion from the angle-axis representation of a rotation. The sense of the rotation is determined according to the right-hand rule.
Params:
angle-
A scalar representing the angle of the rotation (in radians)
axis-
A vector representing the axis of rotation (need not be a unit vector)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# File 'lib/unit_quaternion.rb', line 86 def setAngleAxis(angle, axis) # sets the quaternion based on the angle-axis representation of a # rotation if axis == Vector[0,0,0] raise(ArgumentError, "Axis must not be the zero vector") end if axis.size() != 3 raise(ArgumentError, "Axis must be a 3-dimensional vector") end axis = axis.normalize() @beta0 = Math.cos(angle / 2.0) beta1 = axis[0] * Math.sin(angle / 2.0) beta2 = axis[1] * Math.sin(angle / 2.0) beta3 = axis[2] * Math.sin(angle / 2.0) @beta_s = Vector[beta1, beta2, beta3] end |
#setEuler(theta1, theta2, theta3, axes) ⇒ Object
Sets the values of the quaternion from a set of 3 Euler angles.
Params:
theta1-
The angle of rotation about the first axis
theta2-
The angle of rotation about the second axis
theta3-
The angle of rotation about the third axis
axes-
A string of 3 letters (‘X/x’, ‘Y/y’, or ‘Z/z’) representing the three axes of rotation. Must be all uppercase or all lowercase. If the string is uppercase, the rotations are performed about the inertial axes. If the string is lowercase, the rotations are performed about the body-fixed axes. Repeated axes are allowed, but not in succession (for example, ‘xyx’ is fine, but ‘xxy’ is not allowed).
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# File 'lib/unit_quaternion.rb', line 132 def setEuler(theta1, theta2, theta3, axes) if axes.length() != 3 raise(ArgumentError, "Must specify exactly 3 axes") end quats = Array.new(3) theta = [theta1, theta2, theta3] for i in 0..2 if axes.upcase()[i] == 'X' quats[i] = UnitQuaternion.fromAngleAxis(theta[i], Vector[1, 0, 0]) elsif axes.upcase()[i] == 'Y' quats[i] = UnitQuaternion.fromAngleAxis(theta[i], Vector[0, 1, 0]) elsif axes.upcase()[i] == 'Z' quats[i] = UnitQuaternion.fromAngleAxis(theta[i], Vector[0, 0, 1]) else raise(ArgumentError, "Axes can only be X/x, Y/y, or Z/z") end end if axes == axes.upcase() @beta0, @beta_s = (quats[2] * quats[1] * quats[0]).get() elsif axes == axes.downcase() @beta0, @beta_s = (quats[0] * quats[1] * quats[2]).get() else raise(ArgumentError, "Axes must be either all uppercase or all " + "lowercase") end end |
#setRotationMatrix(mat) ⇒ Object
Sets the values of the quaternion from a rotation matrix
Params:
mat-
A 3x3 orthonormal matrix.
251 252 253 254 255 256 257 258 259 260 261 262 |
# File 'lib/unit_quaternion.rb', line 251 def setRotationMatrix(mat) if mat.row_size() != 3 or mat.column_size() != 3 raise(ArgumentError, "Rotation matrix must be 3x3") end tol = 1e-15 if not isOrthonormalMatrix(mat, tol) raise(ArgumentError, "Matrix is not orthonormal (to within " + tol.to_s(), ")") end theta1, theta2, theta3 = parseMatrix(mat, false) setEuler(theta1, theta2, theta3, 'XYZ') end |
#transform(vec) ⇒ Object
Transforms a vector by applying to it the rotation represented by this quaternion, and returns the result.
Params:
vec-
A 3-D vector in the unrotated frame.
283 284 285 |
# File 'lib/unit_quaternion.rb', line 283 def transform(vec) return getRotationMatrix() * vec end |