Class: Ebooks::Model
- Inherits:
-
Object
- Object
- Ebooks::Model
- Defined in:
- lib/twitter_ebooks/model.rb
Instance Attribute Summary collapse
-
#hash ⇒ Object
Returns the value of attribute hash.
-
#keywords ⇒ Object
Returns the value of attribute keywords.
-
#mentions ⇒ Object
Returns the value of attribute mentions.
-
#sentences ⇒ Object
Returns the value of attribute sentences.
Class Method Summary collapse
Instance Method Summary collapse
- #consume(path) ⇒ Object
-
#find_relevant(sentences, input) ⇒ Object
Finds all relevant tokenized sentences to given input by comparing non-stopword token overlaps.
- #fix(tweet) ⇒ Object
-
#make_response(input, limit = 140, sentences = @mentions) ⇒ Object
Generates a response by looking for related sentences in the corpus and building a smaller generator from these.
- #make_statement(limit = 140, generator = nil, retry_limit = 10) ⇒ Object
- #save(path) ⇒ Object
- #valid_tweet?(tokens, limit) ⇒ Boolean
-
#verbatim?(tokens) ⇒ Boolean
Test if a sentence has been copied verbatim from original.
Instance Attribute Details
#hash ⇒ Object
Returns the value of attribute hash.
10 11 12 |
# File 'lib/twitter_ebooks/model.rb', line 10 def hash @hash end |
#keywords ⇒ Object
Returns the value of attribute keywords.
10 11 12 |
# File 'lib/twitter_ebooks/model.rb', line 10 def keywords @keywords end |
#mentions ⇒ Object
Returns the value of attribute mentions.
10 11 12 |
# File 'lib/twitter_ebooks/model.rb', line 10 def mentions @mentions end |
#sentences ⇒ Object
Returns the value of attribute sentences.
10 11 12 |
# File 'lib/twitter_ebooks/model.rb', line 10 def sentences @sentences end |
Class Method Details
.consume(txtpath) ⇒ Object
12 13 14 |
# File 'lib/twitter_ebooks/model.rb', line 12 def self.consume(txtpath) Model.new.consume(txtpath) end |
.load(path) ⇒ Object
16 17 18 |
# File 'lib/twitter_ebooks/model.rb', line 16 def self.load(path) Marshal.load(File.read(path)) end |
Instance Method Details
#consume(path) ⇒ Object
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# File 'lib/twitter_ebooks/model.rb', line 20 def consume(path) content = File.read(path) @hash = Digest::MD5.hexdigest(content) if path.split('.')[-1] == "json" log "Reading json corpus from #{path}" lines = JSON.parse(content, symbolize_names: true).map do |tweet| tweet[:text] end else log "Reading plaintext corpus from #{path}" lines = content.split("\n") end log "Removing commented lines and sorting mentions" keeping = [] mentions = [] lines.each do |l| next if l.start_with?('#') # Remove commented lines next if l.include?('RT') || l.include?('MT') # Remove soft retweets if l.include?('@') mentions << l else keeping << l end end text = NLP.normalize(keeping.join("\n")) # Normalize weird characters mention_text = NLP.normalize(mentions.join("\n")) log "Segmenting text into sentences" statements = NLP.sentences(text) mentions = NLP.sentences(mention_text) log "Tokenizing #{statements.length} statements and #{mentions.length} mentions" @sentences = [] @mentions = [] statements.each do |s| @sentences << NLP.tokenize(s).reject do |t| t.start_with?('@') || t.start_with?('http') end end mentions.each do |s| @mentions << NLP.tokenize(s).reject do |t| t.start_with?('@') || t.start_with?('http') end end log "Ranking keywords" @keywords = NLP.keywords(@sentences) self end |
#find_relevant(sentences, input) ⇒ Object
Finds all relevant tokenized sentences to given input by comparing non-stopword token overlaps
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# File 'lib/twitter_ebooks/model.rb', line 144 def find_relevant(sentences, input) relevant = [] slightly_relevant = [] tokenized = NLP.tokenize(input).map(&:downcase) sentences.each do |sent| tokenized.each do |token| if sent.map(&:downcase).include?(token) relevant << sent unless NLP.stopword?(token) slightly_relevant << sent end end end [relevant, slightly_relevant] end |
#fix(tweet) ⇒ Object
85 86 87 88 89 90 91 92 93 94 95 96 97 |
# File 'lib/twitter_ebooks/model.rb', line 85 def fix(tweet) # This seems to require an external api call #begin # fixer = NLP.gingerice.parse(tweet) # log fixer if fixer['corrections'] # tweet = fixer['result'] #rescue Exception => e # log e.message # log e.backtrace #end NLP.htmlentities.decode tweet end |
#make_response(input, limit = 140, sentences = @mentions) ⇒ Object
Generates a response by looking for related sentences in the corpus and building a smaller generator from these
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# File 'lib/twitter_ebooks/model.rb', line 164 def make_response(input, limit=140, sentences=@mentions) # Prefer mentions relevant, slightly_relevant = find_relevant(sentences, input) if relevant.length >= 3 generator = SuffixGenerator.build(relevant) make_statement(limit, generator) elsif slightly_relevant.length >= 5 generator = SuffixGenerator.build(slightly_relevant) make_statement(limit, generator) elsif sentences.equal?(@mentions) make_response(input, limit, @sentences) else make_statement(limit) end end |
#make_statement(limit = 140, generator = nil, retry_limit = 10) ⇒ Object
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# File 'lib/twitter_ebooks/model.rb', line 104 def make_statement(limit=140, generator=nil, retry_limit=10) responding = !generator.nil? generator ||= SuffixGenerator.build(@sentences) retries = 0 tweet = "" while (tokens = generator.generate(3, :bigrams)) do next if tokens.length <= 3 && !responding break if valid_tweet?(tokens, limit) retries += 1 break if retries >= retry_limit end if verbatim?(tokens) && tokens.length > 3 # We made a verbatim tweet by accident while (tokens = generator.generate(3, :unigrams)) do break if valid_tweet?(tokens, limit) && !verbatim?(tokens) retries += 1 break if retries >= retry_limit end end tweet = NLP.reconstruct(tokens) if retries >= retry_limit log "Unable to produce valid non-verbatim tweet; using \"#{tweet}\"" end fix tweet end |
#save(path) ⇒ Object
78 79 80 81 82 83 |
# File 'lib/twitter_ebooks/model.rb', line 78 def save(path) File.open(path, 'w') do |f| f.write(Marshal.dump(self)) end self end |
#valid_tweet?(tokens, limit) ⇒ Boolean
99 100 101 102 |
# File 'lib/twitter_ebooks/model.rb', line 99 def valid_tweet?(tokens, limit) tweet = NLP.reconstruct(tokens) tweet.length <= limit && !NLP.unmatched_enclosers?(tweet) end |
#verbatim?(tokens) ⇒ Boolean
Test if a sentence has been copied verbatim from original
138 139 140 |
# File 'lib/twitter_ebooks/model.rb', line 138 def verbatim?(tokens) @sentences.include?(tokens) || @mentions.include?(tokens) end |