245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
# File 'lib/transformers/models/distilbert/modeling_distilbert.rb', line 245
def forward(
x:,
attn_mask: nil,
head_mask: nil,
output_attentions: false,
output_hidden_states: false,
return_dict: nil
)
all_hidden_states = output_hidden_states ? [] : nil
all_attentions = output_attentions ? [] : nil
hidden_state = x
@layer.each_with_index do |layer_module, i|
if output_hidden_states
all_hidden_states = all_hidden_states + [hidden_state]
end
if @gradient_checkpointing && training
layer_outputs =
_gradient_checkpointing_func(
layer_module.__call__,
hidden_state,
attn_mask,
head_mask[i],
output_attentions,
)
else
layer_outputs =
layer_module.(
x: hidden_state,
attn_mask: attn_mask,
head_mask: head_mask[i],
output_attentions: output_attentions
)
end
hidden_state = layer_outputs[-1]
if output_attentions
if layer_outputs.length != 2
raise ArgumentError, "The length of the layer_outputs should be 2, but it is #{layer_outputs.length}"
end
attentions = layer_outputs[0]
all_attentions = all_attentions + [attentions]
else
if layer_outputs.length != 1
raise ArgumentError, "The length of the layer_outputs should be 1, but it is #{layer_outputs.length}"
end
end
end
if output_hidden_states
all_hidden_states = all_hidden_states + [hidden_state]
end
if !return_dict
raise Todo
end
BaseModelOutput.new(
last_hidden_state: hidden_state, hidden_states: all_hidden_states, attentions: all_attentions
)
end
|