Class: Transformers::XlmRoberta::XLMRobertaForTokenClassification

Inherits:
XLMRobertaPreTrainedModel show all
Defined in:
lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb

Instance Attribute Summary

Attributes inherited from PreTrainedModel

#config

Instance Method Summary collapse

Methods inherited from XLMRobertaPreTrainedModel

#_init_weights

Methods inherited from PreTrainedModel

#_backward_compatibility_gradient_checkpointing, #_init_weights, #_initialize_weights, #base_model, #can_generate, #dequantize, #dummy_inputs, #framework, from_pretrained, #get_input_embeddings, #get_output_embeddings, #init_weights, #post_init, #prune_heads, #set_input_embeddings, #tie_weights, #warn_if_padding_and_no_attention_mask

Methods included from ClassAttribute

#class_attribute

Methods included from ModuleUtilsMixin

#device, #get_extended_attention_mask, #get_head_mask

Constructor Details

#initialize(config) ⇒ XLMRobertaForTokenClassification

Returns a new instance of XLMRobertaForTokenClassification.



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
# File 'lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb', line 1080

def initialize(config)
  super(config)
  @num_labels = config.num_labels

  @roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
  classifier_dropout = !config.classifier_dropout.nil? ? config.classifier_dropout : config.hidden_dropout_prob
  @dropout = Torch::NN::Dropout.new(p: classifier_dropout)
  @classifier = Torch::NN::Linear.new(config.hidden_size, config.num_labels)

  # Initialize weights and apply final processing
  post_init
end

Instance Method Details

#forward(input_ids: nil, attention_mask: nil, token_type_ids: nil, position_ids: nil, head_mask: nil, inputs_embeds: nil, labels: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil) ⇒ Object



1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
# File 'lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb', line 1093

def forward(
  input_ids: nil,
  attention_mask: nil,
  token_type_ids: nil,
  position_ids: nil,
  head_mask: nil,
  inputs_embeds: nil,
  labels: nil,
  output_attentions: nil,
  output_hidden_states: nil,
  return_dict: nil
)
  return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict

  outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)

  sequence_output = outputs[0]

  sequence_output = @dropout.(sequence_output)
  logits = @classifier.(sequence_output)

  loss = nil
  if !labels.nil?
    # move labels to correct device to enable model parallelism
    labels = labels.to(logits.device)
    loss_fct = Torch::NN::CrossEntropyLoss.new
    loss = loss_fct.(logits.view(-1, @num_labels), labels.view(-1))
  end

  if !return_dict
    output = [logits] + outputs[2..]
    return !loss.nil? ? [loss] + output : output
  end

  TokenClassifierOutput.new(loss: loss, logits: logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
end