Class: Transformers::DebertaV2::DebertaV2ForSequenceClassification
- Inherits:
-
DebertaV2PreTrainedModel
- Object
- Torch::NN::Module
- PreTrainedModel
- DebertaV2PreTrainedModel
- Transformers::DebertaV2::DebertaV2ForSequenceClassification
- Defined in:
- lib/transformers/models/deberta_v2/modeling_deberta_v2.rb
Instance Attribute Summary
Attributes inherited from PreTrainedModel
Instance Method Summary collapse
- #forward(input_ids: nil, attention_mask: nil, token_type_ids: nil, position_ids: nil, inputs_embeds: nil, labels: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil) ⇒ Object
- #get_input_embeddings ⇒ Object
-
#initialize(config) ⇒ DebertaV2ForSequenceClassification
constructor
A new instance of DebertaV2ForSequenceClassification.
- #set_input_embeddings(new_embeddings) ⇒ Object
Methods inherited from DebertaV2PreTrainedModel
Methods inherited from PreTrainedModel
#_backward_compatibility_gradient_checkpointing, #_init_weights, #_initialize_weights, #base_model, #can_generate, #dequantize, #dummy_inputs, #framework, from_pretrained, #get_output_embeddings, #init_weights, #post_init, #prune_heads, #tie_weights, #warn_if_padding_and_no_attention_mask
Methods included from ClassAttribute
Methods included from ModuleUtilsMixin
#device, #get_extended_attention_mask, #get_head_mask
Constructor Details
#initialize(config) ⇒ DebertaV2ForSequenceClassification
Returns a new instance of DebertaV2ForSequenceClassification.
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
# File 'lib/transformers/models/deberta_v2/modeling_deberta_v2.rb', line 930 def initialize(config) super(config) num_labels = config.getattr("num_labels", 2) @num_labels = num_labels @deberta = DebertaV2Model.new(config) @pooler = ContextPooler.new(config) output_dim = @pooler.output_dim @classifier = Torch::NN::Linear.new(output_dim, num_labels) drop_out = config.getattr("cls_dropout", nil) drop_out = drop_out.nil? ? @config.hidden_dropout_prob : drop_out @dropout = StableDropout.new(drop_out) # Initialize weights and apply final processing post_init end |
Instance Method Details
#forward(input_ids: nil, attention_mask: nil, token_type_ids: nil, position_ids: nil, inputs_embeds: nil, labels: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil) ⇒ Object
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
# File 'lib/transformers/models/deberta_v2/modeling_deberta_v2.rb', line 957 def forward( input_ids: nil, attention_mask: nil, token_type_ids: nil, position_ids: nil, inputs_embeds: nil, labels: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil ) return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict outputs = @deberta.(input_ids, token_type_ids: token_type_ids, attention_mask: attention_mask, position_ids: position_ids, inputs_embeds: , output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict) encoder_layer = outputs[0] pooled_output = @pooler.(encoder_layer) pooled_output = @dropout.(pooled_output) logits = @classifier.(pooled_output) loss = nil if !labels.nil? if @config.problem_type.nil? if @num_labels == 1 # regression task loss_fn = Torch::NN::MSELoss.new logits = logits.view(-1).to(labels.dtype) loss = loss_fn.(logits, labels.view(-1)) elsif labels.dim == 1 || labels.size(-1) == 1 label_index = (labels >= 0).nonzero labels = labels.long if label_index.size(0) > 0 labeled_logits = Torch.gather(logits, 0, label_index.(label_index.size(0), logits.size(1))) labels = Torch.gather(labels, 0, label_index.view(-1)) loss_fct = Torch::NN::CrossEntropyLoss.new loss = loss_fct.(labeled_logits.view(-1, @num_labels).float, labels.view(-1)) else loss = Torch.tensor(0).to(logits) end else log_softmax = Torch::NN::LogSoftmax.new(-1) loss = -(log_softmax.(logits) * labels).sum(-1).mean end elsif @config.problem_type == "regression" loss_fct = Torch::NN::MSELoss.new if @num_labels == 1 loss = loss_fct.(logits.squeeze, labels.squeeze) else loss = loss_fct.(logits, labels) end elsif @config.problem_type == "single_label_classification" loss_fct = Torch::NN::CrossEntropyLoss.new loss = loss_fct.(logits.view(-1, @num_labels), labels.view(-1)) elsif @config.problem_type == "multi_label_classification" loss_fct = Torch::NN::BCEWithLogitsLoss.new loss = loss_fct.(logits, labels) end end if !return_dict output = [logits] + outputs[1..] return !loss.nil? ? [loss] + output : output end SequenceClassifierOutput.new(loss: loss, logits: logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions) end |
#get_input_embeddings ⇒ Object
949 950 951 |
# File 'lib/transformers/models/deberta_v2/modeling_deberta_v2.rb', line 949 def @deberta. end |
#set_input_embeddings(new_embeddings) ⇒ Object
953 954 955 |
# File 'lib/transformers/models/deberta_v2/modeling_deberta_v2.rb', line 953 def () @deberta.() end |