Class: TorchVision::Models::ResNet
- Inherits:
-
Torch::NN::Module
- Object
- Torch::NN::Module
- TorchVision::Models::ResNet
- Defined in:
- lib/torchvision/models/resnet.rb
Constant Summary collapse
- MODEL_URLS =
{ "resnet18" => "https://download.pytorch.org/models/resnet18-f37072fd.pth", "resnet34" => "https://download.pytorch.org/models/resnet34-b627a593.pth", "resnet50" => "https://download.pytorch.org/models/resnet50-0676ba61.pth", "resnet101" => "https://download.pytorch.org/models/resnet101-63fe2227.pth", "resnet152" => "https://download.pytorch.org/models/resnet152-394f9c45.pth", "resnext50_32x4d" => "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", "resnext101_32x8d" => "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", "wide_resnet50_2" => "https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth", "wide_resnet101_2" => "https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth" }
Class Method Summary collapse
Instance Method Summary collapse
- #_forward_impl(x) ⇒ Object
- #_make_layer(block, planes, blocks, stride: 1, dilate: false) ⇒ Object
- #forward(x) ⇒ Object
-
#initialize(block, layers, num_classes = 1000, zero_init_residual: false, groups: 1, width_per_group: 64, replace_stride_with_dilation: nil, norm_layer: nil) ⇒ ResNet
constructor
A new instance of ResNet.
Constructor Details
#initialize(block, layers, num_classes = 1000, zero_init_residual: false, groups: 1, width_per_group: 64, replace_stride_with_dilation: nil, norm_layer: nil) ⇒ ResNet
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# File 'lib/torchvision/models/resnet.rb', line 16 def initialize( block, layers, num_classes = 1000, zero_init_residual: false, groups: 1, width_per_group: 64, replace_stride_with_dilation: nil, norm_layer: nil ) super() norm_layer ||= Torch::NN::BatchNorm2d @norm_layer = norm_layer @inplanes = 64 @dilation = 1 if replace_stride_with_dilation.nil? # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [false, false, false] end if replace_stride_with_dilation.length != 3 raise ArgumentError, "replace_stride_with_dilation should be nil or a 3-element tuple, got #{replace_stride_with_dilation}" end @groups = groups @base_width = width_per_group @conv1 = Torch::NN::Conv2d.new(3, @inplanes, 7, stride: 2, padding: 3, bias: false) @bn1 = norm_layer.new(@inplanes) @relu = Torch::NN::ReLU.new(inplace: true) @maxpool = Torch::NN::MaxPool2d.new(3, stride: 2, padding: 1) @layer1 = _make_layer(block, 64, layers[0]) @layer2 = _make_layer(block, 128, layers[1], stride: 2, dilate: replace_stride_with_dilation[0]) @layer3 = _make_layer(block, 256, layers[2], stride: 2, dilate: replace_stride_with_dilation[1]) @layer4 = _make_layer(block, 512, layers[3], stride: 2, dilate: replace_stride_with_dilation[2]) @avgpool = Torch::NN::AdaptiveAvgPool2d.new([1, 1]) @fc = Torch::NN::Linear.new(512 * block.expansion, num_classes) modules.each do |m| case m when Torch::NN::Conv2d Torch::NN::Init.kaiming_normal!(m.weight, mode: "fan_out", nonlinearity: "relu") when Torch::NN::BatchNorm2d, Torch::NN::GroupNorm Torch::NN::Init.constant!(m.weight, 1) Torch::NN::Init.constant!(m.bias, 0) end end # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual modules.each do |m| case m when Bottleneck Torch::NN::Init.constant!(m.bn3.weight, 0) when BasicBlock Torch::NN::Init.constant!(m.bn2.weight, 0) end end end end |
Class Method Details
.make_model(arch, block, layers, pretrained: false, **kwargs) ⇒ Object
125 126 127 128 129 130 131 132 133 |
# File 'lib/torchvision/models/resnet.rb', line 125 def self.make_model(arch, block, layers, pretrained: false, **kwargs) model = ResNet.new(block, layers, **kwargs) if pretrained url = MODEL_URLS[arch] state_dict = Torch::Hub.load_state_dict_from_url(url) model.load_state_dict(state_dict) end model end |
Instance Method Details
#_forward_impl(x) ⇒ Object
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
# File 'lib/torchvision/models/resnet.rb', line 103 def _forward_impl(x) x = @conv1.call(x) x = @bn1.call(x) x = @relu.call(x) x = @maxpool.call(x) x = @layer1.call(x) x = @layer2.call(x) x = @layer3.call(x) x = @layer4.call(x) x = @avgpool.call(x) x = Torch.flatten(x, 1) x = @fc.call(x) x end |
#_make_layer(block, planes, blocks, stride: 1, dilate: false) ⇒ Object
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# File 'lib/torchvision/models/resnet.rb', line 78 def _make_layer(block, planes, blocks, stride: 1, dilate: false) norm_layer = @norm_layer downsample = nil previous_dilation = @dilation if dilate @dilation *= stride stride = 1 end if stride != 1 || @inplanes != planes * block.expansion downsample = Torch::NN::Sequential.new( Torch::NN::Conv2d.new(@inplanes, planes * block.expansion, 1, stride: stride, bias: false), norm_layer.new(planes * block.expansion) ) end layers = [] layers << block.new(@inplanes, planes, stride: stride, downsample: downsample, groups: @groups, base_width: @base_width, dilation: previous_dilation, norm_layer: norm_layer) @inplanes = planes * block.expansion (blocks - 1).times do layers << block.new(@inplanes, planes, groups: @groups, base_width: @base_width, dilation: @dilation, norm_layer: norm_layer) end Torch::NN::Sequential.new(*layers) end |
#forward(x) ⇒ Object
121 122 123 |
# File 'lib/torchvision/models/resnet.rb', line 121 def forward(x) _forward_impl(x) end |