Class: TorchVision::Transforms::Functional
- Inherits:
-
Object
- Object
- TorchVision::Transforms::Functional
- Defined in:
- lib/torchvision/transforms/functional.rb
Class Method Summary collapse
- .hflip(img) ⇒ Object
- .normalize(tensor, mean, std, inplace: false) ⇒ Object
- .resize(img, size) ⇒ Object
-
.to_tensor(pic) ⇒ Object
TODO improve.
- .vflip(img) ⇒ Object
Class Method Details
.hflip(img) ⇒ Object
91 92 93 94 95 96 97 |
# File 'lib/torchvision/transforms/functional.rb', line 91 def hflip(img) if img.is_a?(Torch::Tensor) img.flip(-1) else img.flip(:horizontal) end end |
.normalize(tensor, mean, std, inplace: false) ⇒ Object
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# File 'lib/torchvision/transforms/functional.rb', line 5 def normalize(tensor, mean, std, inplace: false) unless Torch.tensor?(tensor) raise ArgumentError, "tensor should be a torch tensor. Got #{tensor.class.name}" end if tensor.ndimension != 3 raise ArgumentError, "Expected tensor to be a tensor image of size (C, H, W). Got tensor.size() = #{tensor.size}" end tensor = tensor.clone unless inplace dtype = tensor.dtype # TODO Torch.as_tensor mean = Torch.tensor(mean, dtype: dtype, device: tensor.device) std = Torch.tensor(std, dtype: dtype, device: tensor.device) # TODO if std.to_a.any? { |v| v == 0 } raise ArgumentError, "std evaluated to zero after conversion to #{dtype}, leading to division by zero." end if mean.ndim == 1 mean = mean[0...mean.size(0), nil, nil] end if std.ndim == 1 std = std[0...std.size(0), nil, nil] end tensor.sub!(mean).div!(std) tensor end |
.resize(img, size) ⇒ Object
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# File 'lib/torchvision/transforms/functional.rb', line 35 def resize(img, size) raise "img should be Vips::Image. Got #{img.class.name}" unless img.is_a?(Vips::Image) # TODO support array size raise "Got inappropriate size arg: #{size}" unless size.is_a?(Integer) w, h = img.size if (w <= h && w == size) || (h <= w && h == size) return img end if w < h ow = size oh = (size * h / w).to_i img.thumbnail_image(ow, height: oh) else oh = size ow = (size * w / h).to_i img.thumbnail_image(ow, height: oh) end end |
.to_tensor(pic) ⇒ Object
TODO improve
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# File 'lib/torchvision/transforms/functional.rb', line 56 def to_tensor(pic) if !pic.is_a?(Numo::NArray) && !pic.is_a?(Vips::Image) raise ArgumentError, "pic should be Vips::Image or Numo::NArray. Got #{pic.class.name}" end if pic.is_a?(Numo::NArray) && ![2, 3].include?(pic.ndim) raise ArgumentError, "pic should be 2/3 dimensional. Got #{pic.dim} dimensions." end if pic.is_a?(Numo::NArray) if pic.ndim == 2 pic = pic.reshape(*pic.shape, 1) end img = Torch.from_numo(pic.transpose(2, 0, 1)) if img.dtype == :uint8 return img.float.div(255) else return img end end case pic.format when :uchar img = Torch::ByteTensor.new(Torch::ByteStorage.from_buffer(pic.write_to_memory)) else raise Error, "Format not supported yet: #{pic.format}" end img = img.view(pic.height, pic.width, pic.bands) # put it from HWC to CHW format img = img.permute([2, 0, 1]).contiguous img.float.div(255) end |
.vflip(img) ⇒ Object
99 100 101 102 103 104 105 |
# File 'lib/torchvision/transforms/functional.rb', line 99 def vflip(img) if img.is_a?(Torch::Tensor) img.flip(-2) else img.flip(:vertical) end end |