Module: Torch

Defined in:
lib/torch/inspector.rb,
lib/torch.rb,
lib/torch/hub.rb,
lib/torch/device.rb,
lib/torch/nn/elu.rb,
lib/torch/nn/gru.rb,
lib/torch/nn/rnn.rb,
lib/torch/tensor.rb,
lib/torch/nn/fold.rb,
lib/torch/nn/gelu.rb,
lib/torch/nn/init.rb,
lib/torch/nn/loss.rb,
lib/torch/nn/lstm.rb,
lib/torch/nn/relu.rb,
lib/torch/nn/tanh.rb,
lib/torch/version.rb,
lib/torch/nn/prelu.rb,
lib/torch/nn/utils.rb,
lib/torch/nn/conv1d.rb,
lib/torch/nn/conv2d.rb,
lib/torch/nn/conv3d.rb,
lib/torch/nn/convnd.rb,
lib/torch/nn/linear.rb,
lib/torch/nn/module.rb,
lib/torch/nn/unfold.rb,
lib/torch/optim/sgd.rb,
lib/torch/nn/dropout.rb,
lib/torch/nn/l1_loss.rb,
lib/torch/nn/sigmoid.rb,
lib/torch/nn/softmax.rb,
lib/torch/nn/softmin.rb,
lib/torch/optim/adam.rb,
lib/torch/optim/asgd.rb,
lib/torch/utils/data.rb,
lib/torch/nn/bce_loss.rb,
lib/torch/nn/bilinear.rb,
lib/torch/nn/ctc_loss.rb,
lib/torch/nn/identity.rb,
lib/torch/nn/mse_loss.rb,
lib/torch/nn/nll_loss.rb,
lib/torch/nn/rnn_base.rb,
lib/torch/nn/softplus.rb,
lib/torch/nn/softsign.rb,
lib/torch/nn/upsample.rb,
lib/torch/optim/adamw.rb,
lib/torch/optim/rprop.rb,
lib/torch/nn/dropout2d.rb,
lib/torch/nn/dropout3d.rb,
lib/torch/nn/dropoutnd.rb,
lib/torch/nn/embedding.rb,
lib/torch/nn/lp_pool1d.rb,
lib/torch/nn/lp_pool2d.rb,
lib/torch/nn/lp_poolnd.rb,
lib/torch/nn/parameter.rb,
lib/torch/nn/softmax2d.rb,
lib/torch/optim/adamax.rb,
lib/torch/nn/avg_pool1d.rb,
lib/torch/nn/avg_pool2d.rb,
lib/torch/nn/avg_pool3d.rb,
lib/torch/nn/avg_poolnd.rb,
lib/torch/nn/batch_norm.rb,
lib/torch/nn/functional.rb,
lib/torch/nn/group_norm.rb,
lib/torch/nn/hardshrink.rb,
lib/torch/nn/layer_norm.rb,
lib/torch/nn/leaky_relu.rb,
lib/torch/nn/max_pool1d.rb,
lib/torch/nn/max_pool2d.rb,
lib/torch/nn/max_pool3d.rb,
lib/torch/nn/max_poolnd.rb,
lib/torch/nn/sequential.rb,
lib/torch/nn/softshrink.rb,
lib/torch/nn/tanhshrink.rb,
lib/torch/nn/zero_pad2d.rb,
lib/torch/optim/adagrad.rb,
lib/torch/optim/rmsprop.rb,
lib/torch/nn/kl_div_loss.rb,
lib/torch/nn/log_sigmoid.rb,
lib/torch/nn/log_softmax.rb,
lib/torch/nn/module_list.rb,
lib/torch/nn/transformer.rb,
lib/torch/optim/adadelta.rb,
lib/torch/nn/batch_norm1d.rb,
lib/torch/nn/batch_norm2d.rb,
lib/torch/nn/batch_norm3d.rb,
lib/torch/nn/max_unpool1d.rb,
lib/torch/nn/max_unpool2d.rb,
lib/torch/nn/max_unpool3d.rb,
lib/torch/nn/max_unpoolnd.rb,
lib/torch/optim/optimizer.rb,
lib/torch/nn/alpha_dropout.rb,
lib/torch/nn/embedding_bag.rb,
lib/torch/nn/instance_norm.rb,
lib/torch/nn/weighted_loss.rb,
lib/torch/nn/constant_pad1d.rb,
lib/torch/nn/constant_pad2d.rb,
lib/torch/nn/constant_pad3d.rb,
lib/torch/nn/constant_padnd.rb,
lib/torch/nn/parameter_list.rb,
lib/torch/nn/smooth_l1_loss.rb,
lib/torch/utils/data/subset.rb,
lib/torch/nn/instance_norm1d.rb,
lib/torch/nn/instance_norm2d.rb,
lib/torch/nn/instance_norm3d.rb,
lib/torch/utils/data/dataset.rb,
lib/torch/distributions/utils.rb,
lib/torch/nn/poisson_nll_loss.rb,
lib/torch/nn/reflection_pad1d.rb,
lib/torch/nn/reflection_pad2d.rb,
lib/torch/nn/reflection_padnd.rb,
lib/torch/nn/soft_margin_loss.rb,
lib/torch/distributions/normal.rb,
lib/torch/nn/cosine_similarity.rb,
lib/torch/nn/multi_margin_loss.rb,
lib/torch/nn/pairwise_distance.rb,
lib/torch/nn/replication_pad1d.rb,
lib/torch/nn/replication_pad2d.rb,
lib/torch/nn/replication_pad3d.rb,
lib/torch/nn/replication_padnd.rb,
lib/torch/nn/cross_entropy_loss.rb,
lib/torch/nn/adaptive_avg_pool1d.rb,
lib/torch/nn/adaptive_avg_pool2d.rb,
lib/torch/nn/adaptive_avg_pool3d.rb,
lib/torch/nn/adaptive_avg_poolnd.rb,
lib/torch/nn/adaptive_max_pool1d.rb,
lib/torch/nn/adaptive_max_pool2d.rb,
lib/torch/nn/adaptive_max_pool3d.rb,
lib/torch/nn/adaptive_max_poolnd.rb,
lib/torch/nn/local_response_norm.rb,
lib/torch/nn/margin_ranking_loss.rb,
lib/torch/nn/multihead_attention.rb,
lib/torch/nn/transformer_decoder.rb,
lib/torch/nn/transformer_encoder.rb,
lib/torch/nn/triplet_margin_loss.rb,
lib/torch/utils/data/data_loader.rb,
lib/torch/nn/bce_with_logits_loss.rb,
lib/torch/nn/functional_attention.rb,
lib/torch/nn/hinge_embedding_loss.rb,
lib/torch/nn/cosine_embedding_loss.rb,
lib/torch/nn/feature_alpha_dropout.rb,
lib/torch/utils/data/tensor_dataset.rb,
lib/torch/distributions/distribution.rb,
lib/torch/nn/multi_label_margin_loss.rb,
lib/torch/optim/lr_scheduler/step_lr.rb,
lib/torch/utils/data/iterable_dataset.rb,
lib/torch/nn/transformer_decoder_layer.rb,
lib/torch/nn/transformer_encoder_layer.rb,
lib/torch/optim/lr_scheduler/lambda_lr.rb,
lib/torch/nn/multi_label_soft_margin_loss.rb,
lib/torch/optim/lr_scheduler/lr_scheduler.rb,
lib/torch/distributions/exponential_family.rb,
lib/torch/optim/lr_scheduler/multi_step_lr.rb,
lib/torch/optim/lr_scheduler/exponential_lr.rb,
lib/torch/optim/lr_scheduler/multiplicative_lr.rb,
lib/torch/utils/data/data_pipes/iter_data_pipe.rb,
lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb,
lib/torch/utils/data/data_pipes/iter/file_lister.rb,
lib/torch/utils/data/data_pipes/iter/file_opener.rb,
lib/torch/utils/data/data_pipes/iter/stream_wrapper.rb,
lib/torch/utils/data/data_pipes/filter_iter_data_pipe.rb,
lib/torch/utils/data/data_pipes/iter/iterable_wrapper.rb

Overview

Defined Under Namespace

Modules: Autograd, Distributions, Hub, Inspector, NN, Optim, Utils Classes: ByteStorage, Device, Error, NotImplementedYet, Tensor

Constant Summary collapse

DTYPE_TO_ENUM =
{
  uint8: 0,
  int8: 1,
  short: 2,
  int16: 2,
  int: 3,
  int32: 3,
  long: 4,
  int64: 4,
  half: 5,
  float16: 5,
  float: 6,
  float32: 6,
  double: 7,
  float64: 7,
  complex_half: 8,
  complex32: 8,
  complex_float: 9,
  complex64: 9,
  complex_double: 10,
  cdouble: 10,
  complex128: 10,
  bool: 11,
  qint8: 12,
  quint8: 13,
  qint32: 14,
  bfloat16: 15
}
ENUM_TO_DTYPE =
DTYPE_TO_ENUM.map(&:reverse).to_h
TENSOR_TYPE_CLASSES =
[]
DTYPE_TO_CLASS =
{
  float32: "FloatTensor",
  float64: "DoubleTensor",
  float16: "HalfTensor",
  uint8: "ByteTensor",
  int8: "CharTensor",
  int16: "ShortTensor",
  int32: "IntTensor",
  int64: "LongTensor",
  bool: "BoolTensor"
}
VERSION =
"0.21.0"

Class Method Summary collapse

Class Method Details

._dtype_to_numoObject

private use method for cases when Numo not available or available after Torch loaded

Raises:



358
359
360
361
362
363
364
365
366
367
368
369
370
# File 'lib/torch.rb', line 358

def _dtype_to_numo
  raise Error, "Numo not found" unless defined?(Numo::NArray)

  {
    uint8: Numo::UInt8,
    int8: Numo::Int8,
    int16: Numo::Int16,
    int32: Numo::Int32,
    int64: Numo::Int64,
    float32: Numo::SFloat,
    float64: Numo::DFloat
  }
end

._from_blob_ref(data, size, options) ⇒ Object

private TODO use keepAlive in Rice (currently segfaults)



346
347
348
349
350
351
352
353
# File 'lib/torch.rb', line 346

def _from_blob_ref(data, size, options)
  tensor = _from_blob(data, size, options)
  # from_blob does not own the data, so we need to keep
  # a reference to it for duration of tensor
  # can remove when passing pointer directly
  tensor.instance_variable_set("@_numo_data", data)
  tensor
end

._make_tensor_class(dtype, cuda = false) ⇒ Object



280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# File 'lib/torch.rb', line 280

def self._make_tensor_class(dtype, cuda = false)
  cls = Class.new
  device = cuda ? "cuda" : "cpu"
  cls.define_singleton_method("new") do |*args|
    if args.size == 1 && args.first.is_a?(Tensor)
      args.first.send(dtype).to(device)
    elsif args.size == 1 && args.first.is_a?(ByteStorage) && dtype == :uint8
      bytes = args.first.bytes
      Torch._from_blob_ref(bytes, [bytes.bytesize], TensorOptions.new.dtype(DTYPE_TO_ENUM[dtype]))
    elsif args.size == 1 && args.first.is_a?(Array)
      Torch.tensor(args.first, dtype: dtype, device: device)
    elsif args.size == 0
      Torch.empty(0, dtype: dtype, device: device)
    else
      Torch.empty(*args, dtype: dtype, device: device)
    end
  end
  TENSOR_TYPE_CLASSES << cls
  cls
end

.device(str) ⇒ Object



391
392
393
394
395
396
397
# File 'lib/torch.rb', line 391

def device(str)
  if str.is_a?(Device)
    str
  else
    Device.new(str)
  end
end

.enable_grad(&block) ⇒ Object



376
377
378
# File 'lib/torch.rb', line 376

def enable_grad(&block)
  grad_enabled(true, &block)
end

.from_numo(ndarray) ⇒ Object

Raises:



336
337
338
339
340
341
342
# File 'lib/torch.rb', line 336

def from_numo(ndarray)
  dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
  raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
  options = tensor_options(device: "cpu", dtype: dtype[0])
  # TODO pass pointer to array instead of creating string
  _from_blob_ref(ndarray.to_string, ndarray.shape, options)
end

.grad_enabled(value) ⇒ Object Also known as: set_grad_enabled



380
381
382
383
384
385
386
387
388
# File 'lib/torch.rb', line 380

def grad_enabled(value)
  previous_value = grad_enabled?
  begin
    _set_grad_enabled(value)
    yield
  ensure
    _set_grad_enabled(previous_value)
  end
end

.load(filename) ⇒ Object



403
404
405
406
407
408
# File 'lib/torch.rb', line 403

def load(filename)
  # keep backwards compatibility
  File.open(filename, "rb") { |f| f.read(1) }

  to_ruby(_load(filename))
end

.no_grad(&block) ⇒ Object



372
373
374
# File 'lib/torch.rb', line 372

def no_grad(&block)
  grad_enabled(false, &block)
end

.save(obj, f) ⇒ Object



399
400
401
# File 'lib/torch.rb', line 399

def save(obj, f)
  File.binwrite(f, _save(to_ivalue(obj)))
end

.tensor(data, **options) ⇒ Object

Raises:



410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# File 'lib/torch.rb', line 410

def tensor(data, **options)
  if options[:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray)
    numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h
    options[:dtype] = numo_to_dtype[data.class]
  end

  size = []
  if data.respond_to?(:to_a)
    data = data.to_a
    d = data
    while d.is_a?(Array)
      size << d.size
      d = d.first
    end
    data = data.flatten
  else
    data = [data].compact
  end

  if options[:dtype].nil?
    if data.all? { |v| v.is_a?(Integer) }
      options[:dtype] = :int64
    elsif data.all? { |v| v == true || v == false }
      options[:dtype] = :bool
    elsif data.any? { |v| v.is_a?(Complex) }
      options[:dtype] = :complex64
    end
  end

  # TODO check each dimensions for consistency in future
  raise Error, "Inconsistent dimensions" if data.size != size.inject(1, :*)

  # TODO move to C++
  data = data.map { |v| v ? 1 : 0 } if options[:dtype] == :bool

  _tensor(data, size, tensor_options(**options))
end

.tensor?(obj) ⇒ Boolean

Returns:

  • (Boolean)


332
333
334
# File 'lib/torch.rb', line 332

def tensor?(obj)
  obj.is_a?(Tensor)
end