Module: Torch
- Defined in:
- lib/torch/inspector.rb,
lib/torch.rb,
lib/torch/hub.rb,
lib/torch/nn/gru.rb,
lib/torch/nn/rnn.rb,
lib/torch/tensor.rb,
lib/torch/nn/fold.rb,
lib/torch/nn/init.rb,
lib/torch/nn/loss.rb,
lib/torch/nn/lstm.rb,
lib/torch/nn/relu.rb,
lib/torch/nn/tanh.rb,
lib/torch/version.rb,
lib/torch/nn/prelu.rb,
lib/torch/nn/utils.rb,
lib/torch/nn/conv1d.rb,
lib/torch/nn/conv2d.rb,
lib/torch/nn/conv3d.rb,
lib/torch/nn/convnd.rb,
lib/torch/nn/linear.rb,
lib/torch/nn/module.rb,
lib/torch/nn/unfold.rb,
lib/torch/optim/sgd.rb,
lib/torch/nn/dropout.rb,
lib/torch/nn/l1_loss.rb,
lib/torch/nn/sigmoid.rb,
lib/torch/nn/softmax.rb,
lib/torch/nn/softmin.rb,
lib/torch/optim/adam.rb,
lib/torch/optim/asgd.rb,
lib/torch/utils/data.rb,
lib/torch/nn/bce_loss.rb,
lib/torch/nn/bilinear.rb,
lib/torch/nn/ctc_loss.rb,
lib/torch/nn/identity.rb,
lib/torch/nn/mse_loss.rb,
lib/torch/nn/nll_loss.rb,
lib/torch/nn/rnn_base.rb,
lib/torch/nn/softplus.rb,
lib/torch/nn/softsign.rb,
lib/torch/nn/upsample.rb,
lib/torch/optim/adamw.rb,
lib/torch/optim/rprop.rb,
lib/torch/nn/dropout2d.rb,
lib/torch/nn/dropout3d.rb,
lib/torch/nn/dropoutnd.rb,
lib/torch/nn/embedding.rb,
lib/torch/nn/lp_pool1d.rb,
lib/torch/nn/lp_pool2d.rb,
lib/torch/nn/lp_poolnd.rb,
lib/torch/nn/parameter.rb,
lib/torch/nn/softmax2d.rb,
lib/torch/optim/adamax.rb,
lib/torch/nn/avg_pool1d.rb,
lib/torch/nn/avg_pool2d.rb,
lib/torch/nn/avg_pool3d.rb,
lib/torch/nn/avg_poolnd.rb,
lib/torch/nn/batch_norm.rb,
lib/torch/nn/functional.rb,
lib/torch/nn/group_norm.rb,
lib/torch/nn/hardshrink.rb,
lib/torch/nn/layer_norm.rb,
lib/torch/nn/leaky_relu.rb,
lib/torch/nn/max_pool1d.rb,
lib/torch/nn/max_pool2d.rb,
lib/torch/nn/max_pool3d.rb,
lib/torch/nn/max_poolnd.rb,
lib/torch/nn/sequential.rb,
lib/torch/nn/softshrink.rb,
lib/torch/nn/tanhshrink.rb,
lib/torch/nn/zero_pad2d.rb,
lib/torch/optim/adagrad.rb,
lib/torch/optim/rmsprop.rb,
lib/torch/nn/kl_div_loss.rb,
lib/torch/nn/log_sigmoid.rb,
lib/torch/nn/log_softmax.rb,
lib/torch/nn/module_list.rb,
lib/torch/nn/transformer.rb,
lib/torch/optim/adadelta.rb,
lib/torch/nn/batch_norm1d.rb,
lib/torch/nn/batch_norm2d.rb,
lib/torch/nn/batch_norm3d.rb,
lib/torch/nn/max_unpool1d.rb,
lib/torch/nn/max_unpool2d.rb,
lib/torch/nn/max_unpool3d.rb,
lib/torch/nn/max_unpoolnd.rb,
lib/torch/optim/optimizer.rb,
lib/torch/nn/alpha_dropout.rb,
lib/torch/nn/embedding_bag.rb,
lib/torch/nn/instance_norm.rb,
lib/torch/nn/weighted_loss.rb,
lib/torch/nn/constant_pad1d.rb,
lib/torch/nn/constant_pad2d.rb,
lib/torch/nn/constant_pad3d.rb,
lib/torch/nn/constant_padnd.rb,
lib/torch/nn/smooth_l1_loss.rb,
lib/torch/utils/data/subset.rb,
lib/torch/nn/instance_norm1d.rb,
lib/torch/nn/instance_norm2d.rb,
lib/torch/nn/instance_norm3d.rb,
lib/torch/utils/data/dataset.rb,
lib/torch/nn/poisson_nll_loss.rb,
lib/torch/nn/reflection_pad1d.rb,
lib/torch/nn/reflection_pad2d.rb,
lib/torch/nn/reflection_padnd.rb,
lib/torch/nn/soft_margin_loss.rb,
lib/torch/nn/cosine_similarity.rb,
lib/torch/nn/multi_margin_loss.rb,
lib/torch/nn/pairwise_distance.rb,
lib/torch/nn/replication_pad1d.rb,
lib/torch/nn/replication_pad2d.rb,
lib/torch/nn/replication_pad3d.rb,
lib/torch/nn/replication_padnd.rb,
lib/torch/nn/cross_entropy_loss.rb,
lib/torch/nn/adaptive_avg_pool1d.rb,
lib/torch/nn/adaptive_avg_pool2d.rb,
lib/torch/nn/adaptive_avg_pool3d.rb,
lib/torch/nn/adaptive_avg_poolnd.rb,
lib/torch/nn/adaptive_max_pool1d.rb,
lib/torch/nn/adaptive_max_pool2d.rb,
lib/torch/nn/adaptive_max_pool3d.rb,
lib/torch/nn/adaptive_max_poolnd.rb,
lib/torch/nn/local_response_norm.rb,
lib/torch/nn/margin_ranking_loss.rb,
lib/torch/nn/multihead_attention.rb,
lib/torch/nn/transformer_decoder.rb,
lib/torch/nn/transformer_encoder.rb,
lib/torch/nn/triplet_margin_loss.rb,
lib/torch/utils/data/data_loader.rb,
lib/torch/nn/bce_with_logits_loss.rb,
lib/torch/nn/functional_attention.rb,
lib/torch/nn/hinge_embedding_loss.rb,
lib/torch/nn/cosine_embedding_loss.rb,
lib/torch/nn/feature_alpha_dropout.rb,
lib/torch/utils/data/tensor_dataset.rb,
lib/torch/nn/multi_label_margin_loss.rb,
lib/torch/optim/lr_scheduler/step_lr.rb,
lib/torch/nn/transformer_decoder_layer.rb,
lib/torch/nn/transformer_encoder_layer.rb,
lib/torch/optim/lr_scheduler/lambda_lr.rb,
lib/torch/nn/multi_label_soft_margin_loss.rb,
lib/torch/optim/lr_scheduler/lr_scheduler.rb,
lib/torch/optim/lr_scheduler/multi_step_lr.rb,
lib/torch/optim/lr_scheduler/exponential_lr.rb,
lib/torch/optim/lr_scheduler/multiplicative_lr.rb,
lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb
Overview
Defined Under Namespace
Modules: Autograd, Hub, Inspector, NN, Optim, Utils Classes: ByteStorage, Error, NotImplementedYet, Tensor
Constant Summary collapse
- DTYPE_TO_ENUM =
{ uint8: 0, int8: 1, short: 2, int16: 2, int: 3, int32: 3, long: 4, int64: 4, half: 5, float16: 5, float: 6, float32: 6, double: 7, float64: 7, complex_half: 8, complex32: 8, complex_float: 9, complex64: 9, complex_double: 10, complex128: 10, bool: 11, qint8: 12, quint8: 13, qint32: 14, bfloat16: 15 }
- ENUM_TO_DTYPE =
DTYPE_TO_ENUM.map(&:reverse).to_h
- TENSOR_TYPE_CLASSES =
[]
- DTYPE_TO_CLASS =
{ float32: "FloatTensor", float64: "DoubleTensor", float16: "HalfTensor", uint8: "ByteTensor", int8: "CharTensor", int16: "ShortTensor", int32: "IntTensor", int64: "LongTensor", bool: "BoolTensor" }
- VERSION =
"0.9.1"
Class Method Summary collapse
-
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded.
- ._make_tensor_class(dtype, cuda = false) ⇒ Object
- .device(str) ⇒ Object
- .enable_grad(&block) ⇒ Object
- .from_numo(ndarray) ⇒ Object
- .grad_enabled(value) ⇒ Object (also: set_grad_enabled)
- .load(f) ⇒ Object
- .no_grad(&block) ⇒ Object
- .save(obj, f) ⇒ Object
-
.stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil) ⇒ Object
center option.
- .tensor(data, **options) ⇒ Object
- .tensor?(obj) ⇒ Boolean
Class Method Details
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded
335 336 337 338 339 340 341 342 343 344 345 346 347 |
# File 'lib/torch.rb', line 335 def _dtype_to_numo raise Error, "Numo not found" unless defined?(Numo::NArray) { uint8: Numo::UInt8, int8: Numo::Int8, int16: Numo::Int16, int32: Numo::Int32, int64: Numo::Int64, float32: Numo::SFloat, float64: Numo::DFloat } end |
._make_tensor_class(dtype, cuda = false) ⇒ Object
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# File 'lib/torch.rb', line 262 def self._make_tensor_class(dtype, cuda = false) cls = Class.new device = cuda ? "cuda" : "cpu" cls.define_singleton_method("new") do |*args| if args.size == 1 && args.first.is_a?(Tensor) args.first.send(dtype).to(device) elsif args.size == 1 && args.first.is_a?(ByteStorage) && dtype == :uint8 bytes = args.first.bytes Torch._from_blob(bytes, [bytes.bytesize], TensorOptions.new.dtype(DTYPE_TO_ENUM[dtype])) elsif args.size == 1 && args.first.is_a?(Array) Torch.tensor(args.first, dtype: dtype, device: device) elsif args.size == 0 Torch.empty(0, dtype: dtype, device: device) else Torch.empty(*args, dtype: dtype, device: device) end end TENSOR_TYPE_CLASSES << cls cls end |
.device(str) ⇒ Object
368 369 370 |
# File 'lib/torch.rb', line 368 def device(str) Device.new(str) end |
.enable_grad(&block) ⇒ Object
353 354 355 |
# File 'lib/torch.rb', line 353 def enable_grad(&block) grad_enabled(true, &block) end |
.from_numo(ndarray) ⇒ Object
318 319 320 321 322 323 324 325 326 327 328 329 330 |
# File 'lib/torch.rb', line 318 def from_numo(ndarray) dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) } raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype = (device: "cpu", dtype: dtype[0]) # TODO pass pointer to array instead of creating string str = ndarray.to_string tensor = _from_blob(str, ndarray.shape, ) # from_blob does not own the data, so we need to keep # a reference to it for duration of tensor # can remove when passing pointer directly tensor.instance_variable_set("@_numo_str", str) tensor end |
.grad_enabled(value) ⇒ Object Also known as: set_grad_enabled
357 358 359 360 361 362 363 364 365 |
# File 'lib/torch.rb', line 357 def grad_enabled(value) previous_value = grad_enabled? begin _set_grad_enabled(value) yield ensure _set_grad_enabled(previous_value) end end |
.load(f) ⇒ Object
376 377 378 |
# File 'lib/torch.rb', line 376 def load(f) to_ruby(_load(File.binread(f))) end |
.no_grad(&block) ⇒ Object
349 350 351 |
# File 'lib/torch.rb', line 349 def no_grad(&block) grad_enabled(false, &block) end |
.save(obj, f) ⇒ Object
372 373 374 |
# File 'lib/torch.rb', line 372 def save(obj, f) File.binwrite(f, _save(to_ivalue(obj))) end |
.stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil) ⇒ Object
center option
413 414 415 416 417 418 419 420 421 422 |
# File 'lib/torch.rb', line 413 def stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil) if center signal_dim = input.dim extended_shape = [1] * (3 - signal_dim) + input.size pad = n_fft.div(2).to_i input = NN::F.pad(input.view(extended_shape), [pad, pad], mode: pad_mode) input = input.view(input.shape[-signal_dim..-1]) end _stft(input, n_fft, hop_length, win_length, window, normalized, onesided, return_complex) end |
.tensor(data, **options) ⇒ Object
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
# File 'lib/torch.rb', line 380 def tensor(data, **) if [:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray) numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h [:dtype] = numo_to_dtype[data.class] end size = [] if data.respond_to?(:to_a) data = data.to_a d = data while d.is_a?(Array) size << d.size d = d.first end data = data.flatten else data = [data].compact end if [:dtype].nil? if data.all? { |v| v.is_a?(Integer) } [:dtype] = :int64 elsif data.all? { |v| v == true || v == false } [:dtype] = :bool elsif data.any? { |v| v.is_a?(Complex) } [:dtype] = :complex64 end end _tensor(data, size, (**)) end |
.tensor?(obj) ⇒ Boolean
314 315 316 |
# File 'lib/torch.rb', line 314 def tensor?(obj) obj.is_a?(Tensor) end |