Module: Torch
- Defined in:
- lib/torch/inspector.rb,
 lib/torch.rb,
 lib/torch/hub.rb,
 lib/torch/nn/gru.rb,
 lib/torch/nn/rnn.rb,
 lib/torch/tensor.rb,
 lib/torch/nn/fold.rb,
 lib/torch/nn/init.rb,
 lib/torch/nn/loss.rb,
 lib/torch/nn/lstm.rb,
 lib/torch/nn/relu.rb,
 lib/torch/nn/tanh.rb,
 lib/torch/version.rb,
 lib/torch/nn/prelu.rb,
 lib/torch/nn/utils.rb,
 lib/torch/nn/conv1d.rb,
 lib/torch/nn/conv2d.rb,
 lib/torch/nn/conv3d.rb,
 lib/torch/nn/convnd.rb,
 lib/torch/nn/linear.rb,
 lib/torch/nn/module.rb,
 lib/torch/nn/unfold.rb,
 lib/torch/optim/sgd.rb,
 lib/torch/nn/dropout.rb,
 lib/torch/nn/l1_loss.rb,
 lib/torch/nn/sigmoid.rb,
 lib/torch/nn/softmax.rb,
 lib/torch/nn/softmin.rb,
 lib/torch/optim/adam.rb,
 lib/torch/optim/asgd.rb,
 lib/torch/utils/data.rb,
 lib/torch/nn/bce_loss.rb,
 lib/torch/nn/bilinear.rb,
 lib/torch/nn/ctc_loss.rb,
 lib/torch/nn/identity.rb,
 lib/torch/nn/mse_loss.rb,
 lib/torch/nn/nll_loss.rb,
 lib/torch/nn/rnn_base.rb,
 lib/torch/nn/softplus.rb,
 lib/torch/nn/softsign.rb,
 lib/torch/nn/upsample.rb,
 lib/torch/optim/adamw.rb,
 lib/torch/optim/rprop.rb,
 lib/torch/nn/dropout2d.rb,
 lib/torch/nn/dropout3d.rb,
 lib/torch/nn/dropoutnd.rb,
 lib/torch/nn/embedding.rb,
 lib/torch/nn/lp_pool1d.rb,
 lib/torch/nn/lp_pool2d.rb,
 lib/torch/nn/lp_poolnd.rb,
 lib/torch/nn/parameter.rb,
 lib/torch/nn/softmax2d.rb,
 lib/torch/optim/adamax.rb,
 lib/torch/nn/avg_pool1d.rb,
 lib/torch/nn/avg_pool2d.rb,
 lib/torch/nn/avg_pool3d.rb,
 lib/torch/nn/avg_poolnd.rb,
 lib/torch/nn/batch_norm.rb,
 lib/torch/nn/functional.rb,
 lib/torch/nn/group_norm.rb,
 lib/torch/nn/hardshrink.rb,
 lib/torch/nn/layer_norm.rb,
 lib/torch/nn/leaky_relu.rb,
 lib/torch/nn/max_pool1d.rb,
 lib/torch/nn/max_pool2d.rb,
 lib/torch/nn/max_pool3d.rb,
 lib/torch/nn/max_poolnd.rb,
 lib/torch/nn/sequential.rb,
 lib/torch/nn/softshrink.rb,
 lib/torch/nn/tanhshrink.rb,
 lib/torch/nn/zero_pad2d.rb,
 lib/torch/optim/adagrad.rb,
 lib/torch/optim/rmsprop.rb,
 lib/torch/nn/kl_div_loss.rb,
 lib/torch/nn/log_sigmoid.rb,
 lib/torch/nn/log_softmax.rb,
 lib/torch/nn/module_list.rb,
 lib/torch/nn/transformer.rb,
 lib/torch/optim/adadelta.rb,
 lib/torch/nn/batch_norm1d.rb,
 lib/torch/nn/batch_norm2d.rb,
 lib/torch/nn/batch_norm3d.rb,
 lib/torch/nn/max_unpool1d.rb,
 lib/torch/nn/max_unpool2d.rb,
 lib/torch/nn/max_unpool3d.rb,
 lib/torch/nn/max_unpoolnd.rb,
 lib/torch/optim/optimizer.rb,
 lib/torch/nn/alpha_dropout.rb,
 lib/torch/nn/embedding_bag.rb,
 lib/torch/nn/instance_norm.rb,
 lib/torch/nn/weighted_loss.rb,
 lib/torch/nn/constant_pad1d.rb,
 lib/torch/nn/constant_pad2d.rb,
 lib/torch/nn/constant_pad3d.rb,
 lib/torch/nn/constant_padnd.rb,
 lib/torch/nn/smooth_l1_loss.rb,
 lib/torch/utils/data/subset.rb,
 lib/torch/nn/instance_norm1d.rb,
 lib/torch/nn/instance_norm2d.rb,
 lib/torch/nn/instance_norm3d.rb,
 lib/torch/utils/data/dataset.rb,
 lib/torch/nn/poisson_nll_loss.rb,
 lib/torch/nn/reflection_pad1d.rb,
 lib/torch/nn/reflection_pad2d.rb,
 lib/torch/nn/reflection_padnd.rb,
 lib/torch/nn/soft_margin_loss.rb,
 lib/torch/nn/cosine_similarity.rb,
 lib/torch/nn/multi_margin_loss.rb,
 lib/torch/nn/pairwise_distance.rb,
 lib/torch/nn/replication_pad1d.rb,
 lib/torch/nn/replication_pad2d.rb,
 lib/torch/nn/replication_pad3d.rb,
 lib/torch/nn/replication_padnd.rb,
 lib/torch/nn/cross_entropy_loss.rb,
 lib/torch/nn/adaptive_avg_pool1d.rb,
 lib/torch/nn/adaptive_avg_pool2d.rb,
 lib/torch/nn/adaptive_avg_pool3d.rb,
 lib/torch/nn/adaptive_avg_poolnd.rb,
 lib/torch/nn/adaptive_max_pool1d.rb,
 lib/torch/nn/adaptive_max_pool2d.rb,
 lib/torch/nn/adaptive_max_pool3d.rb,
 lib/torch/nn/adaptive_max_poolnd.rb,
 lib/torch/nn/local_response_norm.rb,
 lib/torch/nn/margin_ranking_loss.rb,
 lib/torch/nn/multihead_attention.rb,
 lib/torch/nn/transformer_decoder.rb,
 lib/torch/nn/transformer_encoder.rb,
 lib/torch/nn/triplet_margin_loss.rb,
 lib/torch/utils/data/data_loader.rb,
 lib/torch/nn/bce_with_logits_loss.rb,
 lib/torch/nn/functional_attention.rb,
 lib/torch/nn/hinge_embedding_loss.rb,
 lib/torch/nn/cosine_embedding_loss.rb,
 lib/torch/nn/feature_alpha_dropout.rb,
 lib/torch/utils/data/tensor_dataset.rb,
 lib/torch/nn/multi_label_margin_loss.rb,
 lib/torch/optim/lr_scheduler/step_lr.rb,
 lib/torch/nn/transformer_decoder_layer.rb,
 lib/torch/nn/transformer_encoder_layer.rb,
 lib/torch/optim/lr_scheduler/lambda_lr.rb,
 lib/torch/nn/multi_label_soft_margin_loss.rb,
 lib/torch/optim/lr_scheduler/lr_scheduler.rb,
 lib/torch/optim/lr_scheduler/multi_step_lr.rb,
 lib/torch/optim/lr_scheduler/exponential_lr.rb,
 lib/torch/optim/lr_scheduler/multiplicative_lr.rb,
 lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb
Overview
Defined Under Namespace
Modules: Autograd, Hub, Inspector, NN, Optim, Utils Classes: ByteStorage, Error, NotImplementedYet, Tensor
Constant Summary collapse
- DTYPE_TO_ENUM =
- { uint8: 0, int8: 1, short: 2, int16: 2, int: 3, int32: 3, long: 4, int64: 4, half: 5, float16: 5, float: 6, float32: 6, double: 7, float64: 7, complex_half: 8, complex32: 8, complex_float: 9, complex64: 9, complex_double: 10, complex128: 10, bool: 11, qint8: 12, quint8: 13, qint32: 14, bfloat16: 15 } 
- ENUM_TO_DTYPE =
- DTYPE_TO_ENUM.map(&:reverse).to_h 
- TENSOR_TYPE_CLASSES =
- [] 
- DTYPE_TO_CLASS =
- { float32: "FloatTensor", float64: "DoubleTensor", float16: "HalfTensor", uint8: "ByteTensor", int8: "CharTensor", int16: "ShortTensor", int32: "IntTensor", int64: "LongTensor", bool: "BoolTensor" } 
- VERSION =
- "0.9.0"
Class Method Summary collapse
- 
  
    
      ._dtype_to_numo  ⇒ Object 
    
    
  
  
  
  
  
  
  
  
  
    private use method for cases when Numo not available or available after Torch loaded. 
- ._make_tensor_class(dtype, cuda = false) ⇒ Object
- .device(str) ⇒ Object
- .empty_like(input, **options) ⇒ Object
- .enable_grad(&block) ⇒ Object
- .from_numo(ndarray) ⇒ Object
- .full_like(input, fill_value, **options) ⇒ Object
- .grad_enabled(value) ⇒ Object (also: set_grad_enabled)
- .load(f) ⇒ Object
- .no_grad(&block) ⇒ Object
- 
  
    
      .ones_like(input, **options)  ⇒ Object 
    
    
  
  
  
  
  
  
  
  
  
    — begin like —. 
- .rand_like(input, **options) ⇒ Object
- .randint_like(input, low, high = nil, **options) ⇒ Object
- .randn_like(input, **options) ⇒ Object
- .save(obj, f) ⇒ Object
- 
  
    
      .stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil)  ⇒ Object 
    
    
  
  
  
  
  
  
  
  
  
    center option. 
- 
  
    
      .tensor(data, **options)  ⇒ Object 
    
    
  
  
  
  
  
  
  
  
  
    — begin tensor creation: pytorch.org/cppdocs/notes/tensor_creation.html —. 
- .tensor?(obj) ⇒ Boolean
- .zeros_like(input, **options) ⇒ Object
Class Method Details
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded
| 335 336 337 338 339 340 341 342 343 344 345 346 347 | # File 'lib/torch.rb', line 335 def _dtype_to_numo raise Error, "Numo not found" unless defined?(Numo::NArray) { uint8: Numo::UInt8, int8: Numo::Int8, int16: Numo::Int16, int32: Numo::Int32, int64: Numo::Int64, float32: Numo::SFloat, float64: Numo::DFloat } end | 
._make_tensor_class(dtype, cuda = false) ⇒ Object
| 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | # File 'lib/torch.rb', line 262 def self._make_tensor_class(dtype, cuda = false) cls = Class.new device = cuda ? "cuda" : "cpu" cls.define_singleton_method("new") do |*args| if args.size == 1 && args.first.is_a?(Tensor) args.first.send(dtype).to(device) elsif args.size == 1 && args.first.is_a?(ByteStorage) && dtype == :uint8 bytes = args.first.bytes Torch._from_blob(bytes, [bytes.bytesize], TensorOptions.new.dtype(DTYPE_TO_ENUM[dtype])) elsif args.size == 1 && args.first.is_a?(Array) Torch.tensor(args.first, dtype: dtype, device: device) elsif args.size == 0 Torch.empty(0, dtype: dtype, device: device) else Torch.empty(*args, dtype: dtype, device: device) end end TENSOR_TYPE_CLASSES << cls cls end | 
.device(str) ⇒ Object
| 368 369 370 | # File 'lib/torch.rb', line 368 def device(str) Device.new(str) end | 
.empty_like(input, **options) ⇒ Object
| 420 421 422 | # File 'lib/torch.rb', line 420 def empty_like(input, **) empty(input.size, **(input, )) end | 
.enable_grad(&block) ⇒ Object
| 353 354 355 | # File 'lib/torch.rb', line 353 def enable_grad(&block) grad_enabled(true, &block) end | 
.from_numo(ndarray) ⇒ Object
| 318 319 320 321 322 323 324 325 326 327 328 329 330 | # File 'lib/torch.rb', line 318 def from_numo(ndarray) dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) } raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype = (device: "cpu", dtype: dtype[0]) # TODO pass pointer to array instead of creating string str = ndarray.to_string tensor = _from_blob(str, ndarray.shape, ) # from_blob does not own the data, so we need to keep # a reference to it for duration of tensor # can remove when passing pointer directly tensor.instance_variable_set("@_numo_str", str) tensor end | 
.full_like(input, fill_value, **options) ⇒ Object
| 424 425 426 | # File 'lib/torch.rb', line 424 def full_like(input, fill_value, **) full(input.size, fill_value, **(input, )) end | 
.grad_enabled(value) ⇒ Object Also known as: set_grad_enabled
| 357 358 359 360 361 362 363 364 365 | # File 'lib/torch.rb', line 357 def grad_enabled(value) previous_value = grad_enabled? begin _set_grad_enabled(value) yield ensure _set_grad_enabled(previous_value) end end | 
.load(f) ⇒ Object
| 376 377 378 | # File 'lib/torch.rb', line 376 def load(f) to_ruby(_load(File.binread(f))) end | 
.no_grad(&block) ⇒ Object
| 349 350 351 | # File 'lib/torch.rb', line 349 def no_grad(&block) grad_enabled(false, &block) end | 
.ones_like(input, **options) ⇒ Object
— begin like —
| 416 417 418 | # File 'lib/torch.rb', line 416 def ones_like(input, **) ones(input.size, **(input, )) end | 
.rand_like(input, **options) ⇒ Object
| 428 429 430 | # File 'lib/torch.rb', line 428 def rand_like(input, **) rand(input.size, **(input, )) end | 
.randint_like(input, low, high = nil, **options) ⇒ Object
| 432 433 434 435 436 437 438 439 | # File 'lib/torch.rb', line 432 def randint_like(input, low, high = nil, **) # ruby doesn't support input, low = 0, high, ... if high.nil? high = low low = 0 end randint(low, high, input.size, **(input, )) end | 
.randn_like(input, **options) ⇒ Object
| 441 442 443 | # File 'lib/torch.rb', line 441 def randn_like(input, **) randn(input.size, **(input, )) end | 
.save(obj, f) ⇒ Object
| 372 373 374 | # File 'lib/torch.rb', line 372 def save(obj, f) File.binwrite(f, _save(to_ivalue(obj))) end | 
.stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil) ⇒ Object
center option
| 450 451 452 453 454 455 456 457 458 459 | # File 'lib/torch.rb', line 450 def stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil) if center signal_dim = input.dim extended_shape = [1] * (3 - signal_dim) + input.size pad = n_fft.div(2).to_i input = NN::F.pad(input.view(extended_shape), [pad, pad], mode: pad_mode) input = input.view(input.shape[-signal_dim..-1]) end _stft(input, n_fft, hop_length, win_length, window, normalized, onesided, return_complex) end | 
.tensor(data, **options) ⇒ Object
— begin tensor creation: pytorch.org/cppdocs/notes/tensor_creation.html —
| 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | # File 'lib/torch.rb', line 382 def tensor(data, **) if [:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray) numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h [:dtype] = numo_to_dtype[data.class] end size = [] if data.respond_to?(:to_a) data = data.to_a d = data while d.is_a?(Array) size << d.size d = d.first end data = data.flatten else data = [data].compact end if [:dtype].nil? if data.all? { |v| v.is_a?(Integer) } [:dtype] = :int64 elsif data.all? { |v| v == true || v == false } [:dtype] = :bool elsif data.any? { |v| v.is_a?(Complex) } [:dtype] = :complex64 end end _tensor(data, size, (**)) end | 
.tensor?(obj) ⇒ Boolean
| 314 315 316 | # File 'lib/torch.rb', line 314 def tensor?(obj) obj.is_a?(Tensor) end | 
.zeros_like(input, **options) ⇒ Object
| 445 446 447 | # File 'lib/torch.rb', line 445 def zeros_like(input, **) zeros(input.size, **(input, )) end |