Module: Torch

Defined in:
lib/torch/inspector.rb,
lib/torch.rb,
lib/torch/hub.rb,
lib/torch/nn/gru.rb,
lib/torch/nn/rnn.rb,
lib/torch/tensor.rb,
lib/torch/nn/fold.rb,
lib/torch/nn/init.rb,
lib/torch/nn/loss.rb,
lib/torch/nn/lstm.rb,
lib/torch/nn/relu.rb,
lib/torch/nn/tanh.rb,
lib/torch/version.rb,
lib/torch/nn/prelu.rb,
lib/torch/nn/utils.rb,
lib/torch/nn/conv1d.rb,
lib/torch/nn/conv2d.rb,
lib/torch/nn/conv3d.rb,
lib/torch/nn/convnd.rb,
lib/torch/nn/linear.rb,
lib/torch/nn/module.rb,
lib/torch/nn/unfold.rb,
lib/torch/optim/sgd.rb,
lib/torch/nn/dropout.rb,
lib/torch/nn/l1_loss.rb,
lib/torch/nn/sigmoid.rb,
lib/torch/nn/softmax.rb,
lib/torch/nn/softmin.rb,
lib/torch/optim/adam.rb,
lib/torch/optim/asgd.rb,
lib/torch/utils/data.rb,
lib/torch/nn/bce_loss.rb,
lib/torch/nn/bilinear.rb,
lib/torch/nn/ctc_loss.rb,
lib/torch/nn/identity.rb,
lib/torch/nn/mse_loss.rb,
lib/torch/nn/nll_loss.rb,
lib/torch/nn/rnn_base.rb,
lib/torch/nn/softplus.rb,
lib/torch/nn/softsign.rb,
lib/torch/nn/upsample.rb,
lib/torch/optim/adamw.rb,
lib/torch/optim/rprop.rb,
lib/torch/nn/dropout2d.rb,
lib/torch/nn/dropout3d.rb,
lib/torch/nn/dropoutnd.rb,
lib/torch/nn/embedding.rb,
lib/torch/nn/lp_pool1d.rb,
lib/torch/nn/lp_pool2d.rb,
lib/torch/nn/lp_poolnd.rb,
lib/torch/nn/parameter.rb,
lib/torch/nn/softmax2d.rb,
lib/torch/optim/adamax.rb,
lib/torch/nn/avg_pool1d.rb,
lib/torch/nn/avg_pool2d.rb,
lib/torch/nn/avg_pool3d.rb,
lib/torch/nn/avg_poolnd.rb,
lib/torch/nn/batch_norm.rb,
lib/torch/nn/functional.rb,
lib/torch/nn/group_norm.rb,
lib/torch/nn/hardshrink.rb,
lib/torch/nn/layer_norm.rb,
lib/torch/nn/leaky_relu.rb,
lib/torch/nn/max_pool1d.rb,
lib/torch/nn/max_pool2d.rb,
lib/torch/nn/max_pool3d.rb,
lib/torch/nn/max_poolnd.rb,
lib/torch/nn/sequential.rb,
lib/torch/nn/softshrink.rb,
lib/torch/nn/tanhshrink.rb,
lib/torch/nn/zero_pad2d.rb,
lib/torch/optim/adagrad.rb,
lib/torch/optim/rmsprop.rb,
lib/torch/nn/kl_div_loss.rb,
lib/torch/nn/log_sigmoid.rb,
lib/torch/nn/log_softmax.rb,
lib/torch/optim/adadelta.rb,
lib/torch/nn/batch_norm1d.rb,
lib/torch/nn/batch_norm2d.rb,
lib/torch/nn/batch_norm3d.rb,
lib/torch/nn/max_unpool1d.rb,
lib/torch/nn/max_unpool2d.rb,
lib/torch/nn/max_unpool3d.rb,
lib/torch/nn/max_unpoolnd.rb,
lib/torch/optim/optimizer.rb,
lib/torch/nn/alpha_dropout.rb,
lib/torch/nn/embedding_bag.rb,
lib/torch/nn/instance_norm.rb,
lib/torch/nn/weighted_loss.rb,
lib/torch/nn/constant_pad1d.rb,
lib/torch/nn/constant_pad2d.rb,
lib/torch/nn/constant_pad3d.rb,
lib/torch/nn/constant_padnd.rb,
lib/torch/nn/smooth_l1_loss.rb,
lib/torch/utils/data/subset.rb,
lib/torch/nn/instance_norm1d.rb,
lib/torch/nn/instance_norm2d.rb,
lib/torch/nn/instance_norm3d.rb,
lib/torch/utils/data/dataset.rb,
lib/torch/nn/poisson_nll_loss.rb,
lib/torch/nn/reflection_pad1d.rb,
lib/torch/nn/reflection_pad2d.rb,
lib/torch/nn/reflection_padnd.rb,
lib/torch/nn/soft_margin_loss.rb,
lib/torch/nn/cosine_similarity.rb,
lib/torch/nn/multi_margin_loss.rb,
lib/torch/nn/pairwise_distance.rb,
lib/torch/nn/replication_pad1d.rb,
lib/torch/nn/replication_pad2d.rb,
lib/torch/nn/replication_pad3d.rb,
lib/torch/nn/replication_padnd.rb,
lib/torch/nn/cross_entropy_loss.rb,
lib/torch/nn/adaptive_avg_pool1d.rb,
lib/torch/nn/adaptive_avg_pool2d.rb,
lib/torch/nn/adaptive_avg_pool3d.rb,
lib/torch/nn/adaptive_avg_poolnd.rb,
lib/torch/nn/adaptive_max_pool1d.rb,
lib/torch/nn/adaptive_max_pool2d.rb,
lib/torch/nn/adaptive_max_pool3d.rb,
lib/torch/nn/adaptive_max_poolnd.rb,
lib/torch/nn/local_response_norm.rb,
lib/torch/nn/margin_ranking_loss.rb,
lib/torch/nn/triplet_margin_loss.rb,
lib/torch/utils/data/data_loader.rb,
lib/torch/nn/bce_with_logits_loss.rb,
lib/torch/nn/hinge_embedding_loss.rb,
lib/torch/nn/cosine_embedding_loss.rb,
lib/torch/nn/feature_alpha_dropout.rb,
lib/torch/utils/data/tensor_dataset.rb,
lib/torch/nn/multi_label_margin_loss.rb,
lib/torch/optim/lr_scheduler/step_lr.rb,
lib/torch/optim/lr_scheduler/lambda_lr.rb,
lib/torch/nn/multi_label_soft_margin_loss.rb,
lib/torch/optim/lr_scheduler/lr_scheduler.rb,
lib/torch/optim/lr_scheduler/multi_step_lr.rb,
lib/torch/optim/lr_scheduler/exponential_lr.rb,
lib/torch/optim/lr_scheduler/multiplicative_lr.rb,
lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb

Overview

Defined Under Namespace

Modules: Autograd, Hub, Inspector, NN, Optim, Utils Classes: ByteStorage, Error, NotImplementedYet, Tensor

Constant Summary collapse

DTYPE_TO_ENUM =
{
  uint8: 0,
  int8: 1,
  short: 2,
  int16: 2,
  int: 3,
  int32: 3,
  long: 4,
  int64: 4,
  half: 5,
  float16: 5,
  float: 6,
  float32: 6,
  double: 7,
  float64: 7,
  complex_half: 8,
  complex_float: 9,
  complex_double: 10,
  bool: 11,
  qint8: 12,
  quint8: 13,
  qint32: 14,
  bfloat16: 15
}
ENUM_TO_DTYPE =
DTYPE_TO_ENUM.map(&:reverse).to_h
TENSOR_TYPE_CLASSES =
[]
DTYPE_TO_CLASS =
{
  float32: "FloatTensor",
  float64: "DoubleTensor",
  float16: "HalfTensor",
  uint8: "ByteTensor",
  int8: "CharTensor",
  int16: "ShortTensor",
  int32: "IntTensor",
  int64: "LongTensor",
  bool: "BoolTensor"
}
VERSION =
"0.5.3"

Class Method Summary collapse

Class Method Details

._dtype_to_numoObject

private use method for cases when Numo not available or available after Torch loaded

Raises:



326
327
328
329
330
331
332
333
334
335
336
337
338
# File 'lib/torch.rb', line 326

def _dtype_to_numo
  raise Error, "Numo not found" unless defined?(Numo::NArray)

  {
    uint8: Numo::UInt8,
    int8: Numo::Int8,
    int16: Numo::Int16,
    int32: Numo::Int32,
    int64: Numo::Int64,
    float32: Numo::SFloat,
    float64: Numo::DFloat
  }
end

._make_tensor_class(dtype, cuda = false) ⇒ Object



253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# File 'lib/torch.rb', line 253

def self._make_tensor_class(dtype, cuda = false)
  cls = Class.new
  device = cuda ? "cuda" : "cpu"
  cls.define_singleton_method("new") do |*args|
    if args.size == 1 && args.first.is_a?(Tensor)
      args.first.send(dtype).to(device)
    elsif args.size == 1 && args.first.is_a?(ByteStorage) && dtype == :uint8
      bytes = args.first.bytes
      Torch._from_blob(bytes, [bytes.bytesize], TensorOptions.new.dtype(DTYPE_TO_ENUM[dtype]))
    elsif args.size == 1 && args.first.is_a?(Array)
      Torch.tensor(args.first, dtype: dtype, device: device)
    elsif args.size == 0
      Torch.empty(0, dtype: dtype, device: device)
    else
      Torch.empty(*args, dtype: dtype, device: device)
    end
  end
  TENSOR_TYPE_CLASSES << cls
  cls
end

.device(str) ⇒ Object



360
361
362
# File 'lib/torch.rb', line 360

def device(str)
  Device.new(str)
end

.empty_like(input, **options) ⇒ Object



410
411
412
# File 'lib/torch.rb', line 410

def empty_like(input, **options)
  empty(input.size, **like_options(input, options))
end

.enable_gradObject



350
351
352
353
354
355
356
357
358
# File 'lib/torch.rb', line 350

def enable_grad
  previous_value = grad_enabled?
  begin
    _set_grad_enabled(true)
    yield
  ensure
    _set_grad_enabled(previous_value)
  end
end

.from_numo(ndarray) ⇒ Object

Raises:



309
310
311
312
313
314
315
316
317
318
319
320
321
# File 'lib/torch.rb', line 309

def from_numo(ndarray)
  dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
  raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
  options = tensor_options(device: "cpu", dtype: dtype[0])
  # TODO pass pointer to array instead of creating string
  str = ndarray.to_string
  tensor = _from_blob(str, ndarray.shape, options)
  # from_blob does not own the data, so we need to keep
  # a reference to it for duration of tensor
  # can remove when passing pointer directly
  tensor.instance_variable_set("@_numo_str", str)
  tensor
end

.full_like(input, fill_value, **options) ⇒ Object



414
415
416
# File 'lib/torch.rb', line 414

def full_like(input, fill_value, **options)
  full(input.size, fill_value, **like_options(input, options))
end

.load(f) ⇒ Object



368
369
370
# File 'lib/torch.rb', line 368

def load(f)
  to_ruby(_load(File.binread(f)))
end

.no_gradObject



340
341
342
343
344
345
346
347
348
# File 'lib/torch.rb', line 340

def no_grad
  previous_value = grad_enabled?
  begin
    _set_grad_enabled(false)
    yield
  ensure
    _set_grad_enabled(previous_value)
  end
end

.ones_like(input, **options) ⇒ Object

— begin like —



406
407
408
# File 'lib/torch.rb', line 406

def ones_like(input, **options)
  ones(input.size, **like_options(input, options))
end

.rand_like(input, **options) ⇒ Object



418
419
420
# File 'lib/torch.rb', line 418

def rand_like(input, **options)
  rand(input.size, **like_options(input, options))
end

.randint_like(input, low, high = nil, **options) ⇒ Object



422
423
424
425
426
427
428
429
# File 'lib/torch.rb', line 422

def randint_like(input, low, high = nil, **options)
  # ruby doesn't support input, low = 0, high, ...
  if high.nil?
    high = low
    low = 0
  end
  randint(low, high, input.size, **like_options(input, options))
end

.randn_like(input, **options) ⇒ Object



431
432
433
# File 'lib/torch.rb', line 431

def randn_like(input, **options)
  randn(input.size, **like_options(input, options))
end

.save(obj, f) ⇒ Object



364
365
366
# File 'lib/torch.rb', line 364

def save(obj, f)
  File.binwrite(f, _save(to_ivalue(obj)))
end

.stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil) ⇒ Object

center option



440
441
442
443
444
445
446
447
448
449
# File 'lib/torch.rb', line 440

def stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil)
  if center
    signal_dim = input.dim
    extended_shape = [1] * (3 - signal_dim) + input.size
    pad = n_fft.div(2).to_i
    input = NN::F.pad(input.view(extended_shape), [pad, pad], mode: pad_mode)
    input = input.view(input.shape[-signal_dim..-1])
  end
  _stft(input, n_fft, hop_length, win_length, window, normalized, onesided, return_complex)
end

.tensor(data, **options) ⇒ Object

— begin tensor creation: pytorch.org/cppdocs/notes/tensor_creation.html



374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# File 'lib/torch.rb', line 374

def tensor(data, **options)
  if options[:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray)
    numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h
    options[:dtype] = numo_to_dtype[data.class]
  end

  size = []
  if data.respond_to?(:to_a)
    data = data.to_a
    d = data
    while d.is_a?(Array)
      size << d.size
      d = d.first
    end
    data = data.flatten
  else
    data = [data].compact
  end

  if options[:dtype].nil?
    if data.all? { |v| v.is_a?(Integer) }
      options[:dtype] = :int64
    elsif data.all? { |v| v == true || v == false }
      options[:dtype] = :bool
    end
  end

  _tensor(data, size, tensor_options(**options))
end

.tensor?(obj) ⇒ Boolean

Returns:

  • (Boolean)


305
306
307
# File 'lib/torch.rb', line 305

def tensor?(obj)
  obj.is_a?(Tensor)
end

.zeros_like(input, **options) ⇒ Object



435
436
437
# File 'lib/torch.rb', line 435

def zeros_like(input, **options)
  zeros(input.size, **like_options(input, options))
end