Module: Torch
- Defined in:
- lib/torch/optim/sgd.rb,
lib/torch.rb,
lib/torch/hub.rb,
lib/torch/nn/gru.rb,
lib/torch/nn/rnn.rb,
lib/torch/random.rb,
lib/torch/tensor.rb,
lib/torch/nn/fold.rb,
lib/torch/nn/init.rb,
lib/torch/nn/loss.rb,
lib/torch/nn/lstm.rb,
lib/torch/nn/relu.rb,
lib/torch/nn/tanh.rb,
lib/torch/version.rb,
lib/torch/nn/prelu.rb,
lib/torch/nn/utils.rb,
lib/torch/inspector.rb,
lib/torch/nn/conv1d.rb,
lib/torch/nn/conv2d.rb,
lib/torch/nn/conv3d.rb,
lib/torch/nn/convnd.rb,
lib/torch/nn/linear.rb,
lib/torch/nn/module.rb,
lib/torch/nn/unfold.rb,
lib/torch/nn/dropout.rb,
lib/torch/nn/l1_loss.rb,
lib/torch/nn/sigmoid.rb,
lib/torch/nn/softmax.rb,
lib/torch/nn/softmin.rb,
lib/torch/optim/adam.rb,
lib/torch/optim/asgd.rb,
lib/torch/nn/bce_loss.rb,
lib/torch/nn/bilinear.rb,
lib/torch/nn/ctc_loss.rb,
lib/torch/nn/identity.rb,
lib/torch/nn/mse_loss.rb,
lib/torch/nn/nll_loss.rb,
lib/torch/nn/rnn_base.rb,
lib/torch/nn/softplus.rb,
lib/torch/nn/softsign.rb,
lib/torch/optim/adamw.rb,
lib/torch/optim/rprop.rb,
lib/torch/nn/dropout2d.rb,
lib/torch/nn/dropout3d.rb,
lib/torch/nn/dropoutnd.rb,
lib/torch/nn/embedding.rb,
lib/torch/nn/lp_pool1d.rb,
lib/torch/nn/lp_pool2d.rb,
lib/torch/nn/lp_poolnd.rb,
lib/torch/nn/parameter.rb,
lib/torch/nn/softmax2d.rb,
lib/torch/optim/adamax.rb,
lib/torch/native/parser.rb,
lib/torch/nn/avg_pool1d.rb,
lib/torch/nn/avg_pool2d.rb,
lib/torch/nn/avg_pool3d.rb,
lib/torch/nn/avg_poolnd.rb,
lib/torch/nn/batch_norm.rb,
lib/torch/nn/functional.rb,
lib/torch/nn/group_norm.rb,
lib/torch/nn/hardshrink.rb,
lib/torch/nn/layer_norm.rb,
lib/torch/nn/leaky_relu.rb,
lib/torch/nn/max_pool1d.rb,
lib/torch/nn/max_pool2d.rb,
lib/torch/nn/max_pool3d.rb,
lib/torch/nn/max_poolnd.rb,
lib/torch/nn/sequential.rb,
lib/torch/nn/softshrink.rb,
lib/torch/nn/tanhshrink.rb,
lib/torch/nn/zero_pad2d.rb,
lib/torch/optim/adagrad.rb,
lib/torch/optim/rmsprop.rb,
lib/torch/nn/kl_div_loss.rb,
lib/torch/nn/log_sigmoid.rb,
lib/torch/nn/log_softmax.rb,
lib/torch/optim/adadelta.rb,
lib/torch/native/function.rb,
lib/torch/nn/batch_norm1d.rb,
lib/torch/nn/batch_norm2d.rb,
lib/torch/nn/batch_norm3d.rb,
lib/torch/nn/max_unpool1d.rb,
lib/torch/nn/max_unpool2d.rb,
lib/torch/nn/max_unpool3d.rb,
lib/torch/nn/max_unpoolnd.rb,
lib/torch/optim/optimizer.rb,
lib/torch/native/generator.rb,
lib/torch/nn/alpha_dropout.rb,
lib/torch/nn/embedding_bag.rb,
lib/torch/nn/instance_norm.rb,
lib/torch/nn/weighted_loss.rb,
lib/torch/native/dispatcher.rb,
lib/torch/nn/constant_pad1d.rb,
lib/torch/nn/constant_pad2d.rb,
lib/torch/nn/constant_pad3d.rb,
lib/torch/nn/constant_padnd.rb,
lib/torch/nn/smooth_l1_loss.rb,
lib/torch/nn/instance_norm1d.rb,
lib/torch/nn/instance_norm2d.rb,
lib/torch/nn/instance_norm3d.rb,
lib/torch/nn/poisson_nll_loss.rb,
lib/torch/nn/reflection_pad1d.rb,
lib/torch/nn/reflection_pad2d.rb,
lib/torch/nn/reflection_padnd.rb,
lib/torch/nn/soft_margin_loss.rb,
lib/torch/nn/cosine_similarity.rb,
lib/torch/nn/multi_margin_loss.rb,
lib/torch/nn/pairwise_distance.rb,
lib/torch/nn/replication_pad1d.rb,
lib/torch/nn/replication_pad2d.rb,
lib/torch/nn/replication_pad3d.rb,
lib/torch/nn/replication_padnd.rb,
lib/torch/nn/cross_entropy_loss.rb,
lib/torch/nn/adaptive_avg_pool1d.rb,
lib/torch/nn/adaptive_avg_pool2d.rb,
lib/torch/nn/adaptive_avg_pool3d.rb,
lib/torch/nn/adaptive_avg_poolnd.rb,
lib/torch/nn/adaptive_max_pool1d.rb,
lib/torch/nn/adaptive_max_pool2d.rb,
lib/torch/nn/adaptive_max_pool3d.rb,
lib/torch/nn/adaptive_max_poolnd.rb,
lib/torch/nn/local_response_norm.rb,
lib/torch/nn/margin_ranking_loss.rb,
lib/torch/nn/triplet_margin_loss.rb,
lib/torch/utils/data/data_loader.rb,
lib/torch/nn/bce_with_logits_loss.rb,
lib/torch/nn/hinge_embedding_loss.rb,
lib/torch/nn/cosine_embedding_loss.rb,
lib/torch/nn/feature_alpha_dropout.rb,
lib/torch/utils/data/tensor_dataset.rb,
lib/torch/nn/multi_label_margin_loss.rb,
lib/torch/optim/lr_scheduler/step_lr.rb,
lib/torch/optim/lr_scheduler/lambda_lr.rb,
lib/torch/nn/multi_label_soft_margin_loss.rb,
lib/torch/optim/lr_scheduler/lr_scheduler.rb,
lib/torch/optim/lr_scheduler/multi_step_lr.rb,
lib/torch/optim/lr_scheduler/exponential_lr.rb,
lib/torch/optim/lr_scheduler/multiplicative_lr.rb,
lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb
Overview
We use a generic interface for methods (*args, **options) and this class to determine the C++ method to call
This is needed since LibTorch uses function overloading, which isn’t available in Ruby or Python
PyTorch uses this approach, but the parser/dispatcher is written in C++
We could generate Ruby methods directly, but an advantage of this approach is arguments and keyword arguments can be used interchangably like in Python, making it easier to port code
Defined Under Namespace
Modules: Hub, Inspector, NN, Native, Optim, Random, Utils
Classes: Error, NotImplementedYet, Tensor
Constant Summary
collapse
- DTYPE_TO_ENUM =
{
uint8: 0,
int8: 1,
short: 2,
int16: 2,
int: 3,
int32: 3,
long: 4,
int64: 4,
half: 5,
float16: 5,
float: 6,
float32: 6,
double: 7,
float64: 7,
complex_half: 8,
complex_float: 9,
complex_double: 10,
bool: 11,
qint8: 12,
quint8: 13,
qint32: 14,
bfloat16: 15
}
- ENUM_TO_DTYPE =
DTYPE_TO_ENUM.map(&:reverse).to_h
- FloatTensor =
_make_tensor_class(:float32)
- DoubleTensor =
_make_tensor_class(:float64)
- HalfTensor =
_make_tensor_class(:float16)
- ByteTensor =
_make_tensor_class(:uint8)
- CharTensor =
_make_tensor_class(:int8)
- ShortTensor =
_make_tensor_class(:int16)
- IntTensor =
_make_tensor_class(:int32)
- LongTensor =
_make_tensor_class(:int64)
- BoolTensor =
_make_tensor_class(:bool)
- VERSION =
"0.2.1"
Class Method Summary
collapse
-
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded.
-
._make_tensor_class(dtype, cuda = false) ⇒ Object
-
.arange(start, finish = nil, step = 1, **options) ⇒ Object
-
.device(str) ⇒ Object
-
.empty(*size, **options) ⇒ Object
-
.empty_like(input, **options) ⇒ Object
-
.eye(n, m = nil, **options) ⇒ Object
-
.from_numo(ndarray) ⇒ Object
-
.full(size, fill_value, **options) ⇒ Object
-
.full_like(input, fill_value, **options) ⇒ Object
-
.linspace(start, finish, steps = 100, **options) ⇒ Object
-
.load(f) ⇒ Object
-
.logspace(start, finish, steps = 100, base = 10.0, **options) ⇒ Object
-
.no_grad ⇒ Object
-
.ones(*size, **options) ⇒ Object
-
.ones_like(input, **options) ⇒ Object
-
.rand(*size, **options) ⇒ Object
-
.rand_like(input, **options) ⇒ Object
-
.randint(low = 0, high, size, **options) ⇒ Object
-
.randint_like(input, low, high = nil, **options) ⇒ Object
-
.randn(*size, **options) ⇒ Object
-
.randn_like(input, **options) ⇒ Object
-
.randperm(n, **options) ⇒ Object
-
.save(obj, f) ⇒ Object
-
.tensor(data, **options) ⇒ Object
-
.tensor?(obj) ⇒ Boolean
-
.zeros(*size, **options) ⇒ Object
-
.zeros_like(input, **options) ⇒ Object
Class Method Details
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded
291
292
293
294
295
296
297
298
299
300
301
302
303
|
# File 'lib/torch.rb', line 291
def _dtype_to_numo
raise Error, "Numo not found" unless defined?(Numo::NArray)
{
uint8: Numo::UInt8,
int8: Numo::Int8,
int16: Numo::Int16,
int32: Numo::Int32,
int64: Numo::Int64,
float32: Numo::SFloat,
float64: Numo::DFloat
}
end
|
._make_tensor_class(dtype, cuda = false) ⇒ Object
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
# File 'lib/torch.rb', line 221
def self._make_tensor_class(dtype, cuda = false)
cls = Class.new
device = cuda ? "cuda" : "cpu"
cls.define_singleton_method("new") do |*args|
if args.size == 1 && args.first.is_a?(Tensor)
args.first.send(dtype).to(device)
elsif args.size == 1 && args.first.is_a?(Array)
Torch.tensor(args.first, dtype: dtype, device: device)
else
Torch.empty(*args, dtype: dtype, device: device)
end
end
cls
end
|
.arange(start, finish = nil, step = 1, **options) ⇒ Object
329
330
331
332
333
334
335
336
|
# File 'lib/torch.rb', line 329
def arange(start, finish = nil, step = 1, **options)
if finish.nil?
finish = start
start = 0
end
_arange(start, finish, step, tensor_options(**options))
end
|
.device(str) ⇒ Object
315
316
317
|
# File 'lib/torch.rb', line 315
def device(str)
Device.new(str)
end
|
.empty(*size, **options) ⇒ Object
338
339
340
|
# File 'lib/torch.rb', line 338
def empty(*size, **options)
_empty(tensor_size(size), tensor_options(**options))
end
|
.empty_like(input, **options) ⇒ Object
418
419
420
|
# File 'lib/torch.rb', line 418
def empty_like(input, **options)
empty(input.size, **like_options(input, options))
end
|
.eye(n, m = nil, **options) ⇒ Object
342
343
344
|
# File 'lib/torch.rb', line 342
def eye(n, m = nil, **options)
_eye(n, m || n, tensor_options(**options))
end
|
.from_numo(ndarray) ⇒ Object
274
275
276
277
278
279
280
281
282
283
284
285
286
|
# File 'lib/torch.rb', line 274
def from_numo(ndarray)
dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
options = tensor_options(device: "cpu", dtype: dtype[0])
str = ndarray.to_string
tensor = _from_blob(str, ndarray.shape, options)
tensor.instance_variable_set("@_numo_str", str)
tensor
end
|
.full(size, fill_value, **options) ⇒ Object
346
347
348
|
# File 'lib/torch.rb', line 346
def full(size, fill_value, **options)
_full(size, fill_value, tensor_options(**options))
end
|
.full_like(input, fill_value, **options) ⇒ Object
422
423
424
|
# File 'lib/torch.rb', line 422
def full_like(input, fill_value, **options)
full(input.size, fill_value, **like_options(input, options))
end
|
.linspace(start, finish, steps = 100, **options) ⇒ Object
350
351
352
|
# File 'lib/torch.rb', line 350
def linspace(start, finish, steps = 100, **options)
_linspace(start, finish, steps, tensor_options(**options))
end
|
.load(f) ⇒ Object
323
324
325
|
# File 'lib/torch.rb', line 323
def load(f)
to_ruby(_load(File.binread(f)))
end
|
.logspace(start, finish, steps = 100, base = 10.0, **options) ⇒ Object
354
355
356
|
# File 'lib/torch.rb', line 354
def logspace(start, finish, steps = 100, base = 10.0, **options)
_logspace(start, finish, steps, base, tensor_options(**options))
end
|
.no_grad ⇒ Object
305
306
307
308
309
310
311
312
313
|
# File 'lib/torch.rb', line 305
def no_grad
previous_value = grad_enabled?
begin
_set_grad_enabled(false)
yield
ensure
_set_grad_enabled(previous_value)
end
end
|
.ones(*size, **options) ⇒ Object
358
359
360
|
# File 'lib/torch.rb', line 358
def ones(*size, **options)
_ones(tensor_size(size), tensor_options(**options))
end
|
.ones_like(input, **options) ⇒ Object
414
415
416
|
# File 'lib/torch.rb', line 414
def ones_like(input, **options)
ones(input.size, **like_options(input, options))
end
|
.rand(*size, **options) ⇒ Object
362
363
364
|
# File 'lib/torch.rb', line 362
def rand(*size, **options)
_rand(tensor_size(size), tensor_options(**options))
end
|
.rand_like(input, **options) ⇒ Object
426
427
428
|
# File 'lib/torch.rb', line 426
def rand_like(input, **options)
rand(input.size, **like_options(input, options))
end
|
.randint(low = 0, high, size, **options) ⇒ Object
366
367
368
|
# File 'lib/torch.rb', line 366
def randint(low = 0, high, size, **options)
_randint(low, high, size, tensor_options(**options))
end
|
.randint_like(input, low, high = nil, **options) ⇒ Object
430
431
432
433
434
435
436
437
|
# File 'lib/torch.rb', line 430
def randint_like(input, low, high = nil, **options)
if high.nil?
high = low
low = 0
end
randint(low, high, input.size, **like_options(input, options))
end
|
.randn(*size, **options) ⇒ Object
370
371
372
|
# File 'lib/torch.rb', line 370
def randn(*size, **options)
_randn(tensor_size(size), tensor_options(**options))
end
|
.randn_like(input, **options) ⇒ Object
439
440
441
|
# File 'lib/torch.rb', line 439
def randn_like(input, **options)
randn(input.size, **like_options(input, options))
end
|
.randperm(n, **options) ⇒ Object
374
375
376
|
# File 'lib/torch.rb', line 374
def randperm(n, **options)
_randperm(n, tensor_options(**options))
end
|
.save(obj, f) ⇒ Object
319
320
321
|
# File 'lib/torch.rb', line 319
def save(obj, f)
File.binwrite(f, _save(to_ivalue(obj)))
end
|
.tensor(data, **options) ⇒ Object
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
# File 'lib/torch.rb', line 382
def tensor(data, **options)
if options[:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray)
numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h
options[:dtype] = numo_to_dtype[data.class]
end
size = []
if data.respond_to?(:to_a)
data = data.to_a
d = data
while d.is_a?(Array)
size << d.size
d = d.first
end
data = data.flatten
else
data = [data].compact
end
if options[:dtype].nil?
if data.all? { |v| v.is_a?(Integer) }
options[:dtype] = :int64
elsif data.all? { |v| v == true || v == false }
options[:dtype] = :bool
end
end
_tensor(data, size, tensor_options(**options))
end
|
.tensor?(obj) ⇒ Boolean
270
271
272
|
# File 'lib/torch.rb', line 270
def tensor?(obj)
obj.is_a?(Tensor)
end
|
.zeros(*size, **options) ⇒ Object
378
379
380
|
# File 'lib/torch.rb', line 378
def zeros(*size, **options)
_zeros(tensor_size(size), tensor_options(**options))
end
|
.zeros_like(input, **options) ⇒ Object
443
444
445
|
# File 'lib/torch.rb', line 443
def zeros_like(input, **options)
zeros(input.size, **like_options(input, options))
end
|