Module: TensorFlow::NN
- Defined in:
- lib/tensorflow/nn.rb
Class Method Summary collapse
- .all_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, seed: nil, seed2: nil) ⇒ Object
-
.avg_pool(value, ksize: nil, strides: nil, padding: nil, data_format: nil) ⇒ Object
def atrous_conv2d_transpose end.
-
.avg_pool3d(input, ksize: nil, strides: nil, padding: nil, data_format: nil) ⇒ Object
def avg_pool2d end.
- .batch_norm_with_global_normalization(t, m, v, beta, gamma, variance_epsilon: nil, scale_after_normalization: nil) ⇒ Object
-
.bias_add(value, bias, data_format: nil) ⇒ Object
def batch_normalization end.
-
.compute_accidental_hits(true_classes, sampled_candidates, num_true: nil, seed: nil, seed2: nil) ⇒ Object
def collapse_repeated end.
-
.conv2d(input, filter, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil) ⇒ Object
def conv1d_transpose end.
-
.conv3d(input, filter, strides: nil, padding: nil, data_format: nil, dilations: nil) ⇒ Object
def conv2d_transpose end.
-
.ctc_beam_search_decoder(inputs, sequence_length, beam_width: nil, top_paths: nil, merge_repeated: nil) ⇒ Object
def crelu end.
- .ctc_greedy_decoder(inputs, sequence_length, merge_repeated: nil) ⇒ Object
- .ctc_loss(inputs, labels_indices, labels_values, sequence_length, preprocess_collapse_repeated: nil, ctc_merge_repeated: nil, ignore_longer_outputs_than_inputs: nil) ⇒ Object
-
.depth_to_space(input, block_size: nil, data_format: nil) ⇒ Object
def ctc_unique_labels end.
-
.dilation2d(input, filter, strides: nil, rates: nil, padding: nil) ⇒ Object
def depthwise_conv2d_backprop_input end.
-
.elu(features) ⇒ Object
def dropout end.
-
.fixed_unigram_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, vocab_file: nil, distortion: nil, num_reserved_ids: nil, num_shards: nil, shard: nil, unigrams: nil, seed: nil, seed2: nil) ⇒ Object
def erosion2d end.
- .fractional_avg_pool(value, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil) ⇒ Object
- .fractional_max_pool(value, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil) ⇒ Object
- .in_top_k(predictions, targets, k: nil) ⇒ Object
- .l2_loss(t) ⇒ Object
-
.leaky_relu(features, alpha: nil) ⇒ Object
def l2_normalize end.
- .learned_unigram_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil) ⇒ Object
-
.log_softmax(logits) ⇒ Object
def log_poisson_loss end.
- .lrn(input, depth_radius: nil, bias: nil, alpha: nil, beta: nil) ⇒ Object
- .max_pool(input, ksize: nil, strides: nil, padding: nil, data_format: nil) ⇒ Object
-
.max_pool3d(input, ksize: nil, strides: nil, padding: nil, data_format: nil) ⇒ Object
def max_pool2d end.
- .max_pool_with_argmax(input, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil) ⇒ Object
-
.relu(features) ⇒ Object
def pool end.
- .relu6(features) ⇒ Object
-
.selu(features) ⇒ Object
def scale_regularization_loss end.
-
.sigmoid(x) ⇒ Object
def separable_conv2d end.
-
.softmax(logits) ⇒ Object
def sigmoid_cross_entropy_with_logits end.
- .softmax_cross_entropy_with_logits(features, labels) ⇒ Object
- .softplus(features) ⇒ Object
- .softsign(features) ⇒ Object
- .space_to_batch(input, paddings, block_size: nil) ⇒ Object
- .space_to_depth(input, block_size: nil, data_format: nil) ⇒ Object
- .sparse_softmax_cross_entropy_with_logits(features, labels) ⇒ Object
-
.tanh(x) ⇒ Object
def sufficient_statistics end.
- .top_k(input, k: nil, sorted: nil) ⇒ Object
Class Method Details
.all_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, seed: nil, seed2: nil) ⇒ Object
4 5 6 |
# File 'lib/tensorflow/nn.rb', line 4 def all_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, seed: nil, seed2: nil) RawOps.all_candidate_sampler(true_classes: true_classes, num_true: num_true, num_sampled: num_sampled, unique: unique, seed: seed, seed2: seed2) end |
.avg_pool(value, ksize: nil, strides: nil, padding: nil, data_format: nil) ⇒ Object
def atrous_conv2d_transpose end
14 15 16 |
# File 'lib/tensorflow/nn.rb', line 14 def avg_pool(value, ksize: nil, strides: nil, padding: nil, data_format: nil) RawOps.avg_pool(value: value, ksize: ksize, strides: strides, padding: padding, data_format: data_format) end |
.avg_pool3d(input, ksize: nil, strides: nil, padding: nil, data_format: nil) ⇒ Object
def avg_pool2d end
24 25 26 |
# File 'lib/tensorflow/nn.rb', line 24 def avg_pool3d(input, ksize: nil, strides: nil, padding: nil, data_format: nil) RawOps.avg_pool3d(input: input, ksize: ksize, strides: strides, padding: padding, data_format: data_format) end |
.batch_norm_with_global_normalization(t, m, v, beta, gamma, variance_epsilon: nil, scale_after_normalization: nil) ⇒ Object
28 29 30 |
# File 'lib/tensorflow/nn.rb', line 28 def batch_norm_with_global_normalization(t, m, v, beta, gamma, variance_epsilon: nil, scale_after_normalization: nil) RawOps.batch_norm_with_global_normalization(t: t, m: m, v: v, beta: beta, gamma: gamma, variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization) end |
.bias_add(value, bias, data_format: nil) ⇒ Object
def batch_normalization end
35 36 37 |
# File 'lib/tensorflow/nn.rb', line 35 def bias_add(value, bias, data_format: nil) RawOps.bias_add(value: value, bias: bias, data_format: data_format) end |
.compute_accidental_hits(true_classes, sampled_candidates, num_true: nil, seed: nil, seed2: nil) ⇒ Object
def collapse_repeated end
42 43 44 |
# File 'lib/tensorflow/nn.rb', line 42 def compute_accidental_hits(true_classes, sampled_candidates, num_true: nil, seed: nil, seed2: nil) RawOps.compute_accidental_hits(true_classes: true_classes, sampled_candidates: sampled_candidates, num_true: num_true, seed: seed, seed2: seed2) end |
.conv2d(input, filter, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil) ⇒ Object
def conv1d_transpose end
55 56 57 |
# File 'lib/tensorflow/nn.rb', line 55 def conv2d(input, filter, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil) RawOps.conv2d(input: input, filter: filter, strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations) end |
.conv3d(input, filter, strides: nil, padding: nil, data_format: nil, dilations: nil) ⇒ Object
def conv2d_transpose end
62 63 64 |
# File 'lib/tensorflow/nn.rb', line 62 def conv3d(input, filter, strides: nil, padding: nil, data_format: nil, dilations: nil) RawOps.conv3d(input: input, filter: filter, strides: strides, padding: padding, data_format: data_format, dilations: dilations) end |
.ctc_beam_search_decoder(inputs, sequence_length, beam_width: nil, top_paths: nil, merge_repeated: nil) ⇒ Object
def crelu end
78 79 80 |
# File 'lib/tensorflow/nn.rb', line 78 def ctc_beam_search_decoder(inputs, sequence_length, beam_width: nil, top_paths: nil, merge_repeated: nil) RawOps.ctc_beam_search_decoder(inputs: inputs, sequence_length: sequence_length, beam_width: beam_width, top_paths: top_paths, merge_repeated: merge_repeated) end |
.ctc_greedy_decoder(inputs, sequence_length, merge_repeated: nil) ⇒ Object
82 83 84 |
# File 'lib/tensorflow/nn.rb', line 82 def ctc_greedy_decoder(inputs, sequence_length, merge_repeated: nil) RawOps.ctc_greedy_decoder(inputs: inputs, sequence_length: sequence_length, merge_repeated: merge_repeated) end |
.ctc_loss(inputs, labels_indices, labels_values, sequence_length, preprocess_collapse_repeated: nil, ctc_merge_repeated: nil, ignore_longer_outputs_than_inputs: nil) ⇒ Object
86 87 88 |
# File 'lib/tensorflow/nn.rb', line 86 def ctc_loss(inputs, labels_indices, labels_values, sequence_length, preprocess_collapse_repeated: nil, ctc_merge_repeated: nil, ignore_longer_outputs_than_inputs: nil) RawOps.ctc_loss(inputs: inputs, labels_indices: labels_indices, labels_values: labels_values, sequence_length: sequence_length, preprocess_collapse_repeated: preprocess_collapse_repeated, ctc_merge_repeated: ctc_merge_repeated, ignore_longer_outputs_than_inputs: ignore_longer_outputs_than_inputs) end |
.depth_to_space(input, block_size: nil, data_format: nil) ⇒ Object
def ctc_unique_labels end
93 94 95 |
# File 'lib/tensorflow/nn.rb', line 93 def depth_to_space(input, block_size: nil, data_format: nil) RawOps.depth_to_space(input: input, block_size: block_size, data_format: data_format) end |
.dilation2d(input, filter, strides: nil, rates: nil, padding: nil) ⇒ Object
def depthwise_conv2d_backprop_input end
106 107 108 |
# File 'lib/tensorflow/nn.rb', line 106 def dilation2d(input, filter, strides: nil, rates: nil, padding: nil) RawOps.dilation2d(input: input, filter: filter, strides: strides, rates: rates, padding: padding) end |
.elu(features) ⇒ Object
def dropout end
113 114 115 |
# File 'lib/tensorflow/nn.rb', line 113 def elu(features) RawOps.elu(features: features) end |
.fixed_unigram_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, vocab_file: nil, distortion: nil, num_reserved_ids: nil, num_shards: nil, shard: nil, unigrams: nil, seed: nil, seed2: nil) ⇒ Object
def erosion2d end
126 127 128 |
# File 'lib/tensorflow/nn.rb', line 126 def fixed_unigram_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, vocab_file: nil, distortion: nil, num_reserved_ids: nil, num_shards: nil, shard: nil, unigrams: nil, seed: nil, seed2: nil) RawOps.fixed_unigram_candidate_sampler(true_classes: true_classes, num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, vocab_file: vocab_file, distortion: distortion, num_reserved_ids: num_reserved_ids, num_shards: num_shards, shard: shard, unigrams: unigrams, seed: seed, seed2: seed2) end |
.fractional_avg_pool(value, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil) ⇒ Object
130 131 132 |
# File 'lib/tensorflow/nn.rb', line 130 def fractional_avg_pool(value, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil) RawOps.fractional_avg_pool(value: value, pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2) end |
.fractional_max_pool(value, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil) ⇒ Object
134 135 136 |
# File 'lib/tensorflow/nn.rb', line 134 def fractional_max_pool(value, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil) RawOps.fractional_max_pool(value: value, pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2) end |
.in_top_k(predictions, targets, k: nil) ⇒ Object
138 139 140 |
# File 'lib/tensorflow/nn.rb', line 138 def in_top_k(predictions, targets, k: nil) RawOps.in_top_k(predictions: predictions, targets: targets, k: k) end |
.l2_loss(t) ⇒ Object
142 143 144 |
# File 'lib/tensorflow/nn.rb', line 142 def l2_loss(t) RawOps.l2_loss(t: t) end |
.leaky_relu(features, alpha: nil) ⇒ Object
def l2_normalize end
149 150 151 |
# File 'lib/tensorflow/nn.rb', line 149 def leaky_relu(features, alpha: nil) RawOps.leaky_relu(features: features, alpha: alpha) end |
.learned_unigram_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil) ⇒ Object
153 154 155 |
# File 'lib/tensorflow/nn.rb', line 153 def learned_unigram_candidate_sampler(true_classes, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil) RawOps.learned_unigram_candidate_sampler(true_classes: true_classes, num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2) end |
.log_softmax(logits) ⇒ Object
def log_poisson_loss end
163 164 165 |
# File 'lib/tensorflow/nn.rb', line 163 def log_softmax(logits) RawOps.log_softmax(logits: logits) end |
.lrn(input, depth_radius: nil, bias: nil, alpha: nil, beta: nil) ⇒ Object
167 168 169 |
# File 'lib/tensorflow/nn.rb', line 167 def lrn(input, depth_radius: nil, bias: nil, alpha: nil, beta: nil) RawOps.lrn(input: input, depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta) end |
.max_pool(input, ksize: nil, strides: nil, padding: nil, data_format: nil) ⇒ Object
171 172 173 |
# File 'lib/tensorflow/nn.rb', line 171 def max_pool(input, ksize: nil, strides: nil, padding: nil, data_format: nil) RawOps.max_pool(input: input, ksize: ksize, strides: strides, padding: padding, data_format: data_format) end |
.max_pool3d(input, ksize: nil, strides: nil, padding: nil, data_format: nil) ⇒ Object
def max_pool2d end
181 182 183 |
# File 'lib/tensorflow/nn.rb', line 181 def max_pool3d(input, ksize: nil, strides: nil, padding: nil, data_format: nil) RawOps.max_pool3d(input: input, ksize: ksize, strides: strides, padding: padding, data_format: data_format) end |
.max_pool_with_argmax(input, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil) ⇒ Object
185 186 187 |
# File 'lib/tensorflow/nn.rb', line 185 def max_pool_with_argmax(input, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil) RawOps.max_pool_with_argmax(input: input, ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index) end |
.relu(features) ⇒ Object
def pool end
201 202 203 |
# File 'lib/tensorflow/nn.rb', line 201 def relu(features) RawOps.relu(features: features) end |
.relu6(features) ⇒ Object
205 206 207 |
# File 'lib/tensorflow/nn.rb', line 205 def relu6(features) RawOps.relu6(features: features) end |
.selu(features) ⇒ Object
def scale_regularization_loss end
218 219 220 |
# File 'lib/tensorflow/nn.rb', line 218 def selu(features) RawOps.selu(features: features) end |
.sigmoid(x) ⇒ Object
def separable_conv2d end
225 226 227 |
# File 'lib/tensorflow/nn.rb', line 225 def sigmoid(x) RawOps.sigmoid(x: x) end |
.softmax(logits) ⇒ Object
def sigmoid_cross_entropy_with_logits end
232 233 234 |
# File 'lib/tensorflow/nn.rb', line 232 def softmax(logits) RawOps.softmax(logits: logits) end |
.softmax_cross_entropy_with_logits(features, labels) ⇒ Object
236 237 238 |
# File 'lib/tensorflow/nn.rb', line 236 def softmax_cross_entropy_with_logits(features, labels) RawOps.softmax_cross_entropy_with_logits(features: features, labels: labels) end |
.softplus(features) ⇒ Object
240 241 242 |
# File 'lib/tensorflow/nn.rb', line 240 def softplus(features) RawOps.softplus(features: features) end |
.softsign(features) ⇒ Object
244 245 246 |
# File 'lib/tensorflow/nn.rb', line 244 def softsign(features) RawOps.softsign(features: features) end |
.space_to_batch(input, paddings, block_size: nil) ⇒ Object
248 249 250 |
# File 'lib/tensorflow/nn.rb', line 248 def space_to_batch(input, paddings, block_size: nil) RawOps.space_to_batch(input: input, paddings: paddings, block_size: block_size) end |
.space_to_depth(input, block_size: nil, data_format: nil) ⇒ Object
252 253 254 |
# File 'lib/tensorflow/nn.rb', line 252 def space_to_depth(input, block_size: nil, data_format: nil) RawOps.space_to_depth(input: input, block_size: block_size, data_format: data_format) end |
.sparse_softmax_cross_entropy_with_logits(features, labels) ⇒ Object
256 257 258 |
# File 'lib/tensorflow/nn.rb', line 256 def sparse_softmax_cross_entropy_with_logits(features, labels) RawOps.sparse_softmax_cross_entropy_with_logits(features: features, labels: labels) end |