Module: TensorFlow::Math
- Defined in:
- lib/tensorflow/math.rb
Class Method Summary collapse
- .abs(x) ⇒ Object
-
.acos(x) ⇒ Object
def accumulate_n end.
- .acosh(x) ⇒ Object
- .add(x, y) ⇒ Object
- .add_n(inputs) ⇒ Object
- .angle(input) ⇒ Object
-
.asin(x) ⇒ Object
def argmin end.
- .asinh(x) ⇒ Object
- .atan(x) ⇒ Object
- .atan2(y, x) ⇒ Object
- .atanh(x) ⇒ Object
-
.bessel_i0e(x) ⇒ Object
def bessel_i0 end.
-
.bessel_i1e(x) ⇒ Object
def bessel_i1 end.
- .betainc(a, b, x) ⇒ Object
- .bincount(arr, size, weights) ⇒ Object
- .ceil(x) ⇒ Object
-
.conj(input) ⇒ Object
def confusion_matrix end.
- .cos(x) ⇒ Object
- .cosh(x) ⇒ Object
-
.cumprod(x, axis, exclusive: nil, reverse: nil) ⇒ Object
def count_nonzero end.
- .cumsum(x, axis, exclusive: nil, reverse: nil) ⇒ Object
-
.digamma(x) ⇒ Object
def cumulative_logsumexp end.
- .divide(x, y) ⇒ Object
-
.equal(x, y) ⇒ Object
def divide_no_nan end.
- .erf(x) ⇒ Object
- .erfc(x) ⇒ Object
- .exp(x) ⇒ Object
- .expm1(x) ⇒ Object
- .floor(x) ⇒ Object
- .floordiv(x, y) ⇒ Object
- .floormod(x, y) ⇒ Object
- .greater(x, y) ⇒ Object
- .greater_equal(x, y) ⇒ Object
- .igamma(a, x) ⇒ Object
- .igammac(a, x) ⇒ Object
- .imag(input) ⇒ Object
- .in_top_k(predictions, targets, k: nil) ⇒ Object
- .invert_permutation(x) ⇒ Object
- .is_finite(x) ⇒ Object
- .is_inf(x) ⇒ Object
- .is_nan(x) ⇒ Object
-
.less(x, y) ⇒ Object
def lbeta end.
- .less_equal(x, y) ⇒ Object
- .lgamma(x) ⇒ Object
- .log(x) ⇒ Object
- .log1p(x) ⇒ Object
-
.log_softmax(logits) ⇒ Object
def log_sigmoid end.
- .logical_and(x, y) ⇒ Object
- .logical_not(x) ⇒ Object
- .logical_or(x, y) ⇒ Object
-
.maximum(x, y) ⇒ Object
def logical_xor end.
- .minimum(x, y) ⇒ Object
- .mod(x, y) ⇒ Object
- .multiply(x, y) ⇒ Object
-
.not_equal(x, y) ⇒ Object
def nextafter end.
- .polygamma(a, x) ⇒ Object
-
.pow(x, y) ⇒ Object
def polyval end.
- .real(input) ⇒ Object
- .reciprocal(x) ⇒ Object
-
.rint(x) ⇒ Object
def reduce_variance end.
- .round(x) ⇒ Object
- .rsqrt(x) ⇒ Object
-
.segment_max(data, segment_ids) ⇒ Object
def scalar_mul end.
- .segment_mean(data, segment_ids) ⇒ Object
- .segment_min(data, segment_ids) ⇒ Object
- .segment_prod(data, segment_ids) ⇒ Object
- .segment_sum(data, segment_ids) ⇒ Object
- .sigmoid(x) ⇒ Object
- .sign(x) ⇒ Object
- .sin(x) ⇒ Object
- .sinh(x) ⇒ Object
- .softmax(logits) ⇒ Object
- .softplus(features) ⇒ Object
- .softsign(features) ⇒ Object
- .sqrt(x) ⇒ Object
- .square(x) ⇒ Object
- .squared_difference(x, y) ⇒ Object
- .subtract(x, y) ⇒ Object
- .tan(x) ⇒ Object
- .tanh(x) ⇒ Object
- .top_k(input, k: nil, sorted: nil) ⇒ Object
-
.unsorted_segment_max(data, segment_ids, num_segments) ⇒ Object
def truediv end.
-
.unsorted_segment_min(data, segment_ids, num_segments) ⇒ Object
def unsorted_segment_mean end.
- .unsorted_segment_prod(data, segment_ids, num_segments) ⇒ Object
-
.unsorted_segment_sum(data, segment_ids, num_segments) ⇒ Object
def unsorted_segment_sqrt_n end.
- .xdivy(x, y) ⇒ Object
- .xlogy(x, y) ⇒ Object
-
.zeta(x, q) ⇒ Object
def zero_fraction end.
Class Method Details
.abs(x) ⇒ Object
4 5 6 |
# File 'lib/tensorflow/math.rb', line 4 def abs(x) RawOps.abs(x: x) end |
.acos(x) ⇒ Object
def accumulate_n end
11 12 13 |
# File 'lib/tensorflow/math.rb', line 11 def acos(x) RawOps.acos(x: x) end |
.acosh(x) ⇒ Object
15 16 17 |
# File 'lib/tensorflow/math.rb', line 15 def acosh(x) RawOps.acosh(x: x) end |
.add(x, y) ⇒ Object
19 20 21 |
# File 'lib/tensorflow/math.rb', line 19 def add(x, y) RawOps.add(x: x, y: y) end |
.add_n(inputs) ⇒ Object
23 24 25 |
# File 'lib/tensorflow/math.rb', line 23 def add_n(inputs) RawOps.add_n(inputs: inputs) end |
.angle(input) ⇒ Object
27 28 29 |
# File 'lib/tensorflow/math.rb', line 27 def angle(input) RawOps.angle(input: input) end |
.asin(x) ⇒ Object
def argmin end
37 38 39 |
# File 'lib/tensorflow/math.rb', line 37 def asin(x) RawOps.asin(x: x) end |
.asinh(x) ⇒ Object
41 42 43 |
# File 'lib/tensorflow/math.rb', line 41 def asinh(x) RawOps.asinh(x: x) end |
.atan(x) ⇒ Object
45 46 47 |
# File 'lib/tensorflow/math.rb', line 45 def atan(x) RawOps.atan(x: x) end |
.atan2(y, x) ⇒ Object
49 50 51 |
# File 'lib/tensorflow/math.rb', line 49 def atan2(y, x) RawOps.atan2(y: y, x: x) end |
.atanh(x) ⇒ Object
53 54 55 |
# File 'lib/tensorflow/math.rb', line 53 def atanh(x) RawOps.atanh(x: x) end |
.bessel_i0e(x) ⇒ Object
def bessel_i0 end
60 61 62 |
# File 'lib/tensorflow/math.rb', line 60 def bessel_i0e(x) RawOps.bessel_i0e(x: x) end |
.bessel_i1e(x) ⇒ Object
def bessel_i1 end
67 68 69 |
# File 'lib/tensorflow/math.rb', line 67 def bessel_i1e(x) RawOps.bessel_i1e(x: x) end |
.betainc(a, b, x) ⇒ Object
71 72 73 |
# File 'lib/tensorflow/math.rb', line 71 def betainc(a, b, x) RawOps.betainc(a: a, b: b, x: x) end |
.bincount(arr, size, weights) ⇒ Object
75 76 77 |
# File 'lib/tensorflow/math.rb', line 75 def bincount(arr, size, weights) RawOps.bincount(arr: arr, size: size, weights: weights) end |
.ceil(x) ⇒ Object
79 80 81 |
# File 'lib/tensorflow/math.rb', line 79 def ceil(x) RawOps.ceil(x: x) end |
.conj(input) ⇒ Object
def confusion_matrix end
86 87 88 |
# File 'lib/tensorflow/math.rb', line 86 def conj(input) RawOps.conj(input: input) end |
.cos(x) ⇒ Object
90 91 92 |
# File 'lib/tensorflow/math.rb', line 90 def cos(x) RawOps.cos(x: x) end |
.cosh(x) ⇒ Object
94 95 96 |
# File 'lib/tensorflow/math.rb', line 94 def cosh(x) RawOps.cosh(x: x) end |
.cumprod(x, axis, exclusive: nil, reverse: nil) ⇒ Object
def count_nonzero end
101 102 103 |
# File 'lib/tensorflow/math.rb', line 101 def cumprod(x, axis, exclusive: nil, reverse: nil) RawOps.cumprod(x: x, axis: axis, exclusive: exclusive, reverse: reverse) end |
.cumsum(x, axis, exclusive: nil, reverse: nil) ⇒ Object
105 106 107 |
# File 'lib/tensorflow/math.rb', line 105 def cumsum(x, axis, exclusive: nil, reverse: nil) RawOps.cumsum(x: x, axis: axis, exclusive: exclusive, reverse: reverse) end |
.digamma(x) ⇒ Object
def cumulative_logsumexp end
112 113 114 |
# File 'lib/tensorflow/math.rb', line 112 def digamma(x) RawOps.digamma(x: x) end |
.divide(x, y) ⇒ Object
116 117 118 |
# File 'lib/tensorflow/math.rb', line 116 def divide(x, y) RawOps.div(x: x, y: y) end |
.equal(x, y) ⇒ Object
def divide_no_nan end
123 124 125 |
# File 'lib/tensorflow/math.rb', line 123 def equal(x, y) RawOps.equal(x: x, y: y) end |
.erf(x) ⇒ Object
127 128 129 |
# File 'lib/tensorflow/math.rb', line 127 def erf(x) RawOps.erf(x: x) end |
.erfc(x) ⇒ Object
131 132 133 |
# File 'lib/tensorflow/math.rb', line 131 def erfc(x) RawOps.erfc(x: x) end |
.exp(x) ⇒ Object
135 136 137 |
# File 'lib/tensorflow/math.rb', line 135 def exp(x) RawOps.exp(x: x) end |
.expm1(x) ⇒ Object
139 140 141 |
# File 'lib/tensorflow/math.rb', line 139 def expm1(x) RawOps.expm1(x: x) end |
.floor(x) ⇒ Object
143 144 145 |
# File 'lib/tensorflow/math.rb', line 143 def floor(x) RawOps.floor(x: x) end |
.floordiv(x, y) ⇒ Object
147 148 149 |
# File 'lib/tensorflow/math.rb', line 147 def floordiv(x, y) RawOps.floor_div(x: x, y: y) end |
.floormod(x, y) ⇒ Object
151 152 153 |
# File 'lib/tensorflow/math.rb', line 151 def floormod(x, y) RawOps.floor_mod(x: x, y: y) end |
.greater(x, y) ⇒ Object
155 156 157 |
# File 'lib/tensorflow/math.rb', line 155 def greater(x, y) RawOps.greater(x: x, y: y) end |
.greater_equal(x, y) ⇒ Object
159 160 161 |
# File 'lib/tensorflow/math.rb', line 159 def greater_equal(x, y) RawOps.greater_equal(x: x, y: y) end |
.igamma(a, x) ⇒ Object
163 164 165 |
# File 'lib/tensorflow/math.rb', line 163 def igamma(a, x) RawOps.igamma(a: a, x: x) end |
.igammac(a, x) ⇒ Object
167 168 169 |
# File 'lib/tensorflow/math.rb', line 167 def igammac(a, x) RawOps.igammac(a: a, x: x) end |
.imag(input) ⇒ Object
171 172 173 |
# File 'lib/tensorflow/math.rb', line 171 def imag(input) RawOps.imag(input: input) end |
.in_top_k(predictions, targets, k: nil) ⇒ Object
175 176 177 |
# File 'lib/tensorflow/math.rb', line 175 def in_top_k(predictions, targets, k: nil) RawOps.in_top_k(predictions: predictions, targets: targets, k: k) end |
.invert_permutation(x) ⇒ Object
179 180 181 |
# File 'lib/tensorflow/math.rb', line 179 def invert_permutation(x) RawOps.invert_permutation(x: x) end |
.is_finite(x) ⇒ Object
183 184 185 |
# File 'lib/tensorflow/math.rb', line 183 def is_finite(x) RawOps.is_finite(x: x) end |
.is_inf(x) ⇒ Object
187 188 189 |
# File 'lib/tensorflow/math.rb', line 187 def is_inf(x) RawOps.is_inf(x: x) end |
.is_nan(x) ⇒ Object
191 192 193 |
# File 'lib/tensorflow/math.rb', line 191 def is_nan(x) RawOps.is_nan(x: x) end |
.less(x, y) ⇒ Object
def lbeta end
207 208 209 |
# File 'lib/tensorflow/math.rb', line 207 def less(x, y) RawOps.less(x: x, y: y) end |
.less_equal(x, y) ⇒ Object
211 212 213 |
# File 'lib/tensorflow/math.rb', line 211 def less_equal(x, y) RawOps.less_equal(x: x, y: y) end |
.lgamma(x) ⇒ Object
215 216 217 |
# File 'lib/tensorflow/math.rb', line 215 def lgamma(x) RawOps.lgamma(x: x) end |
.log(x) ⇒ Object
219 220 221 |
# File 'lib/tensorflow/math.rb', line 219 def log(x) RawOps.log(x: x) end |
.log1p(x) ⇒ Object
223 224 225 |
# File 'lib/tensorflow/math.rb', line 223 def log1p(x) RawOps.log1p(x: x) end |
.log_softmax(logits) ⇒ Object
def log_sigmoid end
230 231 232 |
# File 'lib/tensorflow/math.rb', line 230 def log_softmax(logits) RawOps.log_softmax(logits: logits) end |
.logical_and(x, y) ⇒ Object
234 235 236 |
# File 'lib/tensorflow/math.rb', line 234 def logical_and(x, y) RawOps.logical_and(x: x, y: y) end |
.logical_not(x) ⇒ Object
238 239 240 |
# File 'lib/tensorflow/math.rb', line 238 def logical_not(x) RawOps.logical_not(x: x) end |
.logical_or(x, y) ⇒ Object
242 243 244 |
# File 'lib/tensorflow/math.rb', line 242 def logical_or(x, y) RawOps.logical_or(x: x, y: y) end |
.maximum(x, y) ⇒ Object
def logical_xor end
249 250 251 |
# File 'lib/tensorflow/math.rb', line 249 def maximum(x, y) RawOps.maximum(x: x, y: y) end |
.minimum(x, y) ⇒ Object
253 254 255 |
# File 'lib/tensorflow/math.rb', line 253 def minimum(x, y) RawOps.minimum(x: x, y: y) end |
.mod(x, y) ⇒ Object
257 258 259 |
# File 'lib/tensorflow/math.rb', line 257 def mod(x, y) RawOps.mod(x: x, y: y) end |
.multiply(x, y) ⇒ Object
261 262 263 |
# File 'lib/tensorflow/math.rb', line 261 def multiply(x, y) RawOps.mul(x: x, y: y) end |
.not_equal(x, y) ⇒ Object
def nextafter end
274 275 276 |
# File 'lib/tensorflow/math.rb', line 274 def not_equal(x, y) RawOps.not_equal(x: x, y: y) end |
.polygamma(a, x) ⇒ Object
278 279 280 |
# File 'lib/tensorflow/math.rb', line 278 def polygamma(a, x) RawOps.polygamma(a: a, x: x) end |
.pow(x, y) ⇒ Object
def polyval end
285 286 287 |
# File 'lib/tensorflow/math.rb', line 285 def pow(x, y) RawOps.pow(x: x, y: y) end |
.real(input) ⇒ Object
289 290 291 |
# File 'lib/tensorflow/math.rb', line 289 def real(input) RawOps.real(input: input) end |
.reciprocal(x) ⇒ Object
293 294 295 |
# File 'lib/tensorflow/math.rb', line 293 def reciprocal(x) RawOps.reciprocal(x: x) end |
.rint(x) ⇒ Object
def reduce_variance end
333 334 335 |
# File 'lib/tensorflow/math.rb', line 333 def rint(x) RawOps.rint(x: x) end |
.round(x) ⇒ Object
337 338 339 |
# File 'lib/tensorflow/math.rb', line 337 def round(x) RawOps.round(x: x) end |
.rsqrt(x) ⇒ Object
341 342 343 |
# File 'lib/tensorflow/math.rb', line 341 def rsqrt(x) RawOps.rsqrt(x: x) end |
.segment_max(data, segment_ids) ⇒ Object
def scalar_mul end
348 349 350 |
# File 'lib/tensorflow/math.rb', line 348 def segment_max(data, segment_ids) RawOps.segment_max(data: data, segment_ids: segment_ids) end |
.segment_mean(data, segment_ids) ⇒ Object
352 353 354 |
# File 'lib/tensorflow/math.rb', line 352 def segment_mean(data, segment_ids) RawOps.segment_mean(data: data, segment_ids: segment_ids) end |
.segment_min(data, segment_ids) ⇒ Object
356 357 358 |
# File 'lib/tensorflow/math.rb', line 356 def segment_min(data, segment_ids) RawOps.segment_min(data: data, segment_ids: segment_ids) end |
.segment_prod(data, segment_ids) ⇒ Object
360 361 362 |
# File 'lib/tensorflow/math.rb', line 360 def segment_prod(data, segment_ids) RawOps.segment_prod(data: data, segment_ids: segment_ids) end |
.segment_sum(data, segment_ids) ⇒ Object
364 365 366 |
# File 'lib/tensorflow/math.rb', line 364 def segment_sum(data, segment_ids) RawOps.segment_sum(data: data, segment_ids: segment_ids) end |
.sigmoid(x) ⇒ Object
368 369 370 |
# File 'lib/tensorflow/math.rb', line 368 def sigmoid(x) RawOps.sigmoid(x: x) end |
.sign(x) ⇒ Object
372 373 374 |
# File 'lib/tensorflow/math.rb', line 372 def sign(x) RawOps.sign(x: x) end |
.sin(x) ⇒ Object
376 377 378 |
# File 'lib/tensorflow/math.rb', line 376 def sin(x) RawOps.sin(x: x) end |
.sinh(x) ⇒ Object
380 381 382 |
# File 'lib/tensorflow/math.rb', line 380 def sinh(x) RawOps.sinh(x: x) end |
.softmax(logits) ⇒ Object
384 385 386 |
# File 'lib/tensorflow/math.rb', line 384 def softmax(logits) RawOps.softmax(logits: logits) end |
.softplus(features) ⇒ Object
388 389 390 |
# File 'lib/tensorflow/math.rb', line 388 def softplus(features) RawOps.softplus(features: features) end |
.softsign(features) ⇒ Object
392 393 394 |
# File 'lib/tensorflow/math.rb', line 392 def softsign(features) RawOps.softsign(features: features) end |
.sqrt(x) ⇒ Object
396 397 398 |
# File 'lib/tensorflow/math.rb', line 396 def sqrt(x) RawOps.sqrt(x: x) end |
.square(x) ⇒ Object
400 401 402 |
# File 'lib/tensorflow/math.rb', line 400 def square(x) RawOps.square(x: x) end |
.squared_difference(x, y) ⇒ Object
404 405 406 |
# File 'lib/tensorflow/math.rb', line 404 def squared_difference(x, y) RawOps.squared_difference(x: x, y: y) end |
.subtract(x, y) ⇒ Object
408 409 410 |
# File 'lib/tensorflow/math.rb', line 408 def subtract(x, y) RawOps.sub(x: x, y: y) end |
.tan(x) ⇒ Object
412 413 414 |
# File 'lib/tensorflow/math.rb', line 412 def tan(x) RawOps.tan(x: x) end |
.tanh(x) ⇒ Object
416 417 418 |
# File 'lib/tensorflow/math.rb', line 416 def tanh(x) RawOps.tanh(x: x) end |
.top_k(input, k: nil, sorted: nil) ⇒ Object
420 421 422 |
# File 'lib/tensorflow/math.rb', line 420 def top_k(input, k: nil, sorted: nil) RawOps.top_k(input: input, k: k, sorted: sorted) end |
.unsorted_segment_max(data, segment_ids, num_segments) ⇒ Object
def truediv end
427 428 429 |
# File 'lib/tensorflow/math.rb', line 427 def unsorted_segment_max(data, segment_ids, num_segments) RawOps.unsorted_segment_max(data: data, segment_ids: segment_ids, num_segments: num_segments) end |
.unsorted_segment_min(data, segment_ids, num_segments) ⇒ Object
def unsorted_segment_mean end
434 435 436 |
# File 'lib/tensorflow/math.rb', line 434 def unsorted_segment_min(data, segment_ids, num_segments) RawOps.unsorted_segment_min(data: data, segment_ids: segment_ids, num_segments: num_segments) end |
.unsorted_segment_prod(data, segment_ids, num_segments) ⇒ Object
438 439 440 |
# File 'lib/tensorflow/math.rb', line 438 def unsorted_segment_prod(data, segment_ids, num_segments) RawOps.unsorted_segment_prod(data: data, segment_ids: segment_ids, num_segments: num_segments) end |
.unsorted_segment_sum(data, segment_ids, num_segments) ⇒ Object
def unsorted_segment_sqrt_n end
445 446 447 |
# File 'lib/tensorflow/math.rb', line 445 def unsorted_segment_sum(data, segment_ids, num_segments) RawOps.unsorted_segment_sum(data: data, segment_ids: segment_ids, num_segments: num_segments) end |
.xdivy(x, y) ⇒ Object
449 450 451 |
# File 'lib/tensorflow/math.rb', line 449 def xdivy(x, y) RawOps.xdivy(x: x, y: y) end |
.xlogy(x, y) ⇒ Object
453 454 455 |
# File 'lib/tensorflow/math.rb', line 453 def xlogy(x, y) RawOps.xlogy(x: x, y: y) end |
.zeta(x, q) ⇒ Object
def zero_fraction end
460 461 462 |
# File 'lib/tensorflow/math.rb', line 460 def zeta(x, q) RawOps.zeta(x: x, q: q) end |