Module: Tensorflow::Math
- Defined in:
- lib/tensorflow/ops/math.rb
Class Method Summary collapse
- .abs(x, dtype: nil) ⇒ Object
-
.acos(x, dtype: nil) ⇒ Object
def accumulate_n end.
- .acosh(x, dtype: nil) ⇒ Object
- .add(x, y, dtype: nil) ⇒ Object
- .add_n(inputs, dtype: nil) ⇒ Object
- .angle(input, dtype: nil) ⇒ Object
-
.asin(x, dtype: nil) ⇒ Object
def argmin end.
- .asinh(x, dtype: nil) ⇒ Object
- .atan(x, dtype: nil) ⇒ Object
- .atan2(y, x, dtype: nil) ⇒ Object
- .atanh(x, dtype: nil) ⇒ Object
-
.bessel_i0e(x, dtype: nil) ⇒ Object
def bessel_i0 end.
-
.bessel_i1e(x, dtype: nil) ⇒ Object
def bessel_i1 end.
- .betainc(a, b, x, dtype: nil) ⇒ Object
- .bincount(arr, size, weights, dtype: nil) ⇒ Object
- .ceil(x, dtype: nil) ⇒ Object
-
.conj(input, dtype: nil) ⇒ Object
def confusion_matrix end.
- .cos(x, dtype: nil) ⇒ Object
- .cosh(x, dtype: nil) ⇒ Object
-
.cumprod(x, axis, exclusive: nil, reverse: nil, dtype: nil) ⇒ Object
def count_nonzero end.
- .cumsum(x, axis, exclusive: nil, reverse: nil, dtype: nil) ⇒ Object
-
.digamma(x, dtype: nil) ⇒ Object
def cumulative_logsumexp end.
- .divide(x, y, dtype: nil) ⇒ Object
-
.equal(x, y, dtype: nil) ⇒ Object
def divide_no_nan end.
- .erf(x, dtype: nil) ⇒ Object
- .erfc(x, dtype: nil) ⇒ Object
- .exp(x, dtype: nil) ⇒ Object
- .expm1(x, dtype: nil) ⇒ Object
- .floor(x, dtype: nil) ⇒ Object
- .floordiv(x, y, dtype: nil) ⇒ Object
- .floormod(x, y, dtype: nil) ⇒ Object
- .greater(x, y, dtype: nil) ⇒ Object
- .greater_equal(x, y, dtype: nil) ⇒ Object
- .igamma(a, x, dtype: nil) ⇒ Object
- .igammac(a, x, dtype: nil) ⇒ Object
- .imag(input, dtype: nil) ⇒ Object
- .in_top_k(predictions, targets, k = nil, dtype: nil) ⇒ Object
- .invert_permutation(x, dtype: nil) ⇒ Object
- .is_finite(x, dtype: nil) ⇒ Object
- .is_inf(x, dtype: nil) ⇒ Object
- .is_nan(x, dtype: nil) ⇒ Object
-
.less(x, y, dtype: nil) ⇒ Object
def lbeta end.
- .less_equal(x, y, dtype: nil) ⇒ Object
- .lgamma(x, dtype: nil) ⇒ Object
- .log(x, dtype: nil) ⇒ Object
- .log1p(x, dtype: nil) ⇒ Object
- .log_sigmoid(x, dtype: nil) ⇒ Object
- .log_softmax(logits, dtype: nil) ⇒ Object
- .logical_and(x, y, dtype: nil) ⇒ Object
- .logical_not(x, dtype: nil) ⇒ Object
- .logical_or(x, y, dtype: nil) ⇒ Object
- .logical_xor(x, y, dtype: nil) ⇒ Object
- .maximum(x, y, dtype: nil) ⇒ Object
- .minimum(x, y, dtype: nil) ⇒ Object
- .mod(x, y, dtype: nil) ⇒ Object
- .multiply(x, y, dtype: nil) ⇒ Object
- .multiply_no_nan(x, y, dtype: nil) ⇒ Object
- .negative(x, dtype: nil) ⇒ Object
-
.not_equal(x, y, dtype: nil) ⇒ Object
def nextafter end.
- .polygamma(a, x, dtype: nil) ⇒ Object
-
.pow(x, y, dtype: nil) ⇒ Object
def polyval end.
- .real(input, dtype: nil) ⇒ Object
- .reciprocal(x, dtype: nil) ⇒ Object
-
.reduce_any(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
def reduce_all end.
-
.reduce_max(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
def reduce_logsumexp end.
- .reduce_mean(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
- .reduce_min(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
- .reduce_prod(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
- .reduce_std(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
- .reduce_sum(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
- .reduce_variance(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
- .rint(x, dtype: nil) ⇒ Object
- .round(x, dtype: nil) ⇒ Object
- .rsqrt(x, dtype: nil) ⇒ Object
-
.segment_max(data, segment_ids, dtype: nil) ⇒ Object
def scalar_mul end.
- .segment_mean(data, segment_ids, dtype: nil) ⇒ Object
- .segment_min(data, segment_ids, dtype: nil) ⇒ Object
- .segment_prod(data, segment_ids, dtype: nil) ⇒ Object
- .segment_sum(data, segment_ids, dtype: nil) ⇒ Object
- .sigmoid(x, dtype: nil) ⇒ Object
- .sign(x, dtype: nil) ⇒ Object
- .sin(x, dtype: nil) ⇒ Object
- .sinh(x, dtype: nil) ⇒ Object
- .softmax(logits, dtype: nil) ⇒ Object
- .softplus(features, dtype: nil) ⇒ Object
- .softsign(features, dtype: nil) ⇒ Object
- .sqrt(x, dtype: nil) ⇒ Object
- .square(x, dtype: nil) ⇒ Object
- .squared_difference(x, y, dtype: nil) ⇒ Object
- .subtract(x, y, dtype: nil) ⇒ Object
- .tan(x, dtype: nil) ⇒ Object
- .tanh(x, dtype: nil) ⇒ Object
- .top_k(input, k: nil, sorted: nil, dtype: nil) ⇒ Object
-
.unsorted_segment_max(data, segment_ids, num_segments, dtype: nil) ⇒ Object
def truediv end.
-
.unsorted_segment_min(data, segment_ids, num_segments, dtype: nil) ⇒ Object
def unsorted_segment_mean end.
- .unsorted_segment_prod(data, segment_ids, num_segments, dtype: nil) ⇒ Object
-
.unsorted_segment_sum(data, segment_ids, num_segments, dtype: nil) ⇒ Object
def unsorted_segment_sqrt_n end.
- .xdivy(x, y, dtype: nil) ⇒ Object
- .xlogy(x, y, dtype: nil) ⇒ Object
-
.zeta(x, q, dtype: nil) ⇒ Object
def zero_fraction end.
Class Method Details
.abs(x, dtype: nil) ⇒ Object
4 5 6 |
# File 'lib/tensorflow/ops/math.rb', line 4 def abs(x, dtype: nil) RawOps.abs(x, typeT: dtype) end |
.acos(x, dtype: nil) ⇒ Object
def accumulate_n end
11 12 13 |
# File 'lib/tensorflow/ops/math.rb', line 11 def acos(x, dtype: nil) RawOps.acos(x, typeT: dtype) end |
.acosh(x, dtype: nil) ⇒ Object
15 16 17 |
# File 'lib/tensorflow/ops/math.rb', line 15 def acosh(x, dtype: nil) RawOps.acosh(x, typeT: dtype) end |
.add(x, y, dtype: nil) ⇒ Object
19 20 21 |
# File 'lib/tensorflow/ops/math.rb', line 19 def add(x, y, dtype: nil) RawOps.add(x, y, typeT: dtype) end |
.add_n(inputs, dtype: nil) ⇒ Object
23 24 25 |
# File 'lib/tensorflow/ops/math.rb', line 23 def add_n(inputs, dtype: nil) RawOps.add_n(inputs, n: inputs.length, typeT: dtype) end |
.angle(input, dtype: nil) ⇒ Object
27 28 29 |
# File 'lib/tensorflow/ops/math.rb', line 27 def angle(input, dtype: nil) RawOps.angle(input, typeT: dtype) end |
.asin(x, dtype: nil) ⇒ Object
def argmin end
37 38 39 |
# File 'lib/tensorflow/ops/math.rb', line 37 def asin(x, dtype: nil) RawOps.asin(x, typeT: dtype) end |
.asinh(x, dtype: nil) ⇒ Object
41 42 43 |
# File 'lib/tensorflow/ops/math.rb', line 41 def asinh(x, dtype: nil) RawOps.asinh(x, typeT: dtype) end |
.atan(x, dtype: nil) ⇒ Object
45 46 47 |
# File 'lib/tensorflow/ops/math.rb', line 45 def atan(x, dtype: nil) RawOps.atan(x, typeT: dtype) end |
.atan2(y, x, dtype: nil) ⇒ Object
49 50 51 |
# File 'lib/tensorflow/ops/math.rb', line 49 def atan2(y, x, dtype: nil) RawOps.atan2(y, x, typeT: dtype) end |
.atanh(x, dtype: nil) ⇒ Object
53 54 55 |
# File 'lib/tensorflow/ops/math.rb', line 53 def atanh(x, dtype: nil) RawOps.atanh(x, typeT: dtype) end |
.bessel_i0e(x, dtype: nil) ⇒ Object
def bessel_i0 end
60 61 62 |
# File 'lib/tensorflow/ops/math.rb', line 60 def bessel_i0e(x, dtype: nil) RawOps.bessel_i0e(x, typeT: dtype) end |
.bessel_i1e(x, dtype: nil) ⇒ Object
def bessel_i1 end
67 68 69 |
# File 'lib/tensorflow/ops/math.rb', line 67 def bessel_i1e(x, dtype: nil) RawOps.bessel_i1e(x, typeT: dtype) end |
.betainc(a, b, x, dtype: nil) ⇒ Object
71 72 73 |
# File 'lib/tensorflow/ops/math.rb', line 71 def betainc(a, b, x, dtype: nil) RawOps.betainc(a, b, x, typeT: dtype) end |
.bincount(arr, size, weights, dtype: nil) ⇒ Object
75 76 77 |
# File 'lib/tensorflow/ops/math.rb', line 75 def bincount(arr, size, weights, dtype: nil) RawOps.bincount(arr, size, weights, typeT: dtype) end |
.ceil(x, dtype: nil) ⇒ Object
79 80 81 |
# File 'lib/tensorflow/ops/math.rb', line 79 def ceil(x, dtype: nil) RawOps.ceil(x, typeT: dtype) end |
.conj(input, dtype: nil) ⇒ Object
def confusion_matrix end
86 87 88 |
# File 'lib/tensorflow/ops/math.rb', line 86 def conj(input, dtype: nil) RawOps.conj(input, typeT: dtype) end |
.cos(x, dtype: nil) ⇒ Object
90 91 92 |
# File 'lib/tensorflow/ops/math.rb', line 90 def cos(x, dtype: nil) RawOps.cos(x, typeT: dtype) end |
.cosh(x, dtype: nil) ⇒ Object
94 95 96 |
# File 'lib/tensorflow/ops/math.rb', line 94 def cosh(x, dtype: nil) RawOps.cosh(x, typeT: dtype) end |
.cumprod(x, axis, exclusive: nil, reverse: nil, dtype: nil) ⇒ Object
def count_nonzero end
101 102 103 |
# File 'lib/tensorflow/ops/math.rb', line 101 def cumprod(x, axis, exclusive: nil, reverse: nil, dtype: nil) RawOps.cumprod(x, axis, exclusive: exclusive, reverse: reverse, typeT: dtype) end |
.cumsum(x, axis, exclusive: nil, reverse: nil, dtype: nil) ⇒ Object
105 106 107 |
# File 'lib/tensorflow/ops/math.rb', line 105 def cumsum(x, axis, exclusive: nil, reverse: nil, dtype: nil) RawOps.cumsum(x, axis, exclusive: exclusive, reverse: reverse, typeT: dtype) end |
.digamma(x, dtype: nil) ⇒ Object
def cumulative_logsumexp end
112 113 114 |
# File 'lib/tensorflow/ops/math.rb', line 112 def digamma(x, dtype: nil) RawOps.digamma(x, typeT: dtype) end |
.divide(x, y, dtype: nil) ⇒ Object
116 117 118 |
# File 'lib/tensorflow/ops/math.rb', line 116 def divide(x, y, dtype: nil) RawOps.div(x, y, typeT: dtype) end |
.equal(x, y, dtype: nil) ⇒ Object
def divide_no_nan end
123 124 125 |
# File 'lib/tensorflow/ops/math.rb', line 123 def equal(x, y, dtype: nil) RawOps.equal(x, y, typeT: dtype) end |
.erf(x, dtype: nil) ⇒ Object
127 128 129 |
# File 'lib/tensorflow/ops/math.rb', line 127 def erf(x, dtype: nil) RawOps.erf(x, typeT: dtype) end |
.erfc(x, dtype: nil) ⇒ Object
131 132 133 |
# File 'lib/tensorflow/ops/math.rb', line 131 def erfc(x, dtype: nil) RawOps.erfc(x, typeT: dtype) end |
.exp(x, dtype: nil) ⇒ Object
135 136 137 |
# File 'lib/tensorflow/ops/math.rb', line 135 def exp(x, dtype: nil) RawOps.exp(x, typeT: dtype) end |
.expm1(x, dtype: nil) ⇒ Object
139 140 141 |
# File 'lib/tensorflow/ops/math.rb', line 139 def expm1(x, dtype: nil) RawOps.expm1(x, typeT: dtype) end |
.floor(x, dtype: nil) ⇒ Object
143 144 145 |
# File 'lib/tensorflow/ops/math.rb', line 143 def floor(x, dtype: nil) RawOps.floor(x, typeT: dtype) end |
.floordiv(x, y, dtype: nil) ⇒ Object
147 148 149 |
# File 'lib/tensorflow/ops/math.rb', line 147 def floordiv(x, y, dtype: nil) RawOps.floor_div(x, y, typeT: dtype) end |
.floormod(x, y, dtype: nil) ⇒ Object
151 152 153 |
# File 'lib/tensorflow/ops/math.rb', line 151 def floormod(x, y, dtype: nil) RawOps.floor_mod(x, y, typeT: dtype) end |
.greater(x, y, dtype: nil) ⇒ Object
155 156 157 |
# File 'lib/tensorflow/ops/math.rb', line 155 def greater(x, y, dtype: nil) RawOps.greater(x, y, typeT: dtype) end |
.greater_equal(x, y, dtype: nil) ⇒ Object
159 160 161 |
# File 'lib/tensorflow/ops/math.rb', line 159 def greater_equal(x, y, dtype: nil) RawOps.greater_equal(x, y, typeT: dtype) end |
.igamma(a, x, dtype: nil) ⇒ Object
163 164 165 |
# File 'lib/tensorflow/ops/math.rb', line 163 def igamma(a, x, dtype: nil) RawOps.igamma(a, x, typeT: dtype) end |
.igammac(a, x, dtype: nil) ⇒ Object
167 168 169 |
# File 'lib/tensorflow/ops/math.rb', line 167 def igammac(a, x, dtype: nil) RawOps.igammac(a, x, typeT: dtype) end |
.imag(input, dtype: nil) ⇒ Object
171 172 173 |
# File 'lib/tensorflow/ops/math.rb', line 171 def imag(input, dtype: nil) RawOps.imag(input, typeT: dtype) end |
.in_top_k(predictions, targets, k = nil, dtype: nil) ⇒ Object
175 176 177 |
# File 'lib/tensorflow/ops/math.rb', line 175 def in_top_k(predictions, targets, k=nil, dtype: nil) RawOps.in_top_kv2(predictions, targets, k, typeT: dtype) end |
.invert_permutation(x, dtype: nil) ⇒ Object
179 180 181 |
# File 'lib/tensorflow/ops/math.rb', line 179 def invert_permutation(x, dtype: nil) RawOps.invert_permutation(x, typeT: dtype) end |
.is_finite(x, dtype: nil) ⇒ Object
183 184 185 |
# File 'lib/tensorflow/ops/math.rb', line 183 def is_finite(x, dtype: nil) RawOps.is_finite(x, typeT: dtype) end |
.is_inf(x, dtype: nil) ⇒ Object
187 188 189 |
# File 'lib/tensorflow/ops/math.rb', line 187 def is_inf(x, dtype: nil) RawOps.is_inf(x, typeT: dtype) end |
.is_nan(x, dtype: nil) ⇒ Object
191 192 193 |
# File 'lib/tensorflow/ops/math.rb', line 191 def is_nan(x, dtype: nil) RawOps.is_nan(x, typeT: dtype) end |
.less(x, y, dtype: nil) ⇒ Object
def lbeta end
207 208 209 |
# File 'lib/tensorflow/ops/math.rb', line 207 def less(x, y, dtype: nil) RawOps.less(x, y, typeT: dtype) end |
.less_equal(x, y, dtype: nil) ⇒ Object
211 212 213 |
# File 'lib/tensorflow/ops/math.rb', line 211 def less_equal(x, y, dtype: nil) RawOps.less_equal(x, y, typeT: dtype) end |
.lgamma(x, dtype: nil) ⇒ Object
215 216 217 |
# File 'lib/tensorflow/ops/math.rb', line 215 def lgamma(x, dtype: nil) RawOps.lgamma(x, typeT: dtype) end |
.log(x, dtype: nil) ⇒ Object
219 220 221 |
# File 'lib/tensorflow/ops/math.rb', line 219 def log(x, dtype: nil) RawOps.log(x, typeT: dtype) end |
.log1p(x, dtype: nil) ⇒ Object
223 224 225 |
# File 'lib/tensorflow/ops/math.rb', line 223 def log1p(x, dtype: nil) RawOps.log1p(x, typeT: dtype) end |
.log_sigmoid(x, dtype: nil) ⇒ Object
227 228 229 |
# File 'lib/tensorflow/ops/math.rb', line 227 def log_sigmoid(x, dtype: nil) negative(RawOps.softplus(-x, typeT: nil), dtype: dtype) end |
.log_softmax(logits, dtype: nil) ⇒ Object
231 232 233 |
# File 'lib/tensorflow/ops/math.rb', line 231 def log_softmax(logits, dtype: nil) RawOps.log_softmax(logits: logits, typeT: dtype) end |
.logical_and(x, y, dtype: nil) ⇒ Object
235 236 237 |
# File 'lib/tensorflow/ops/math.rb', line 235 def logical_and(x, y, dtype: nil) RawOps.logical_and(x, y) end |
.logical_not(x, dtype: nil) ⇒ Object
239 240 241 |
# File 'lib/tensorflow/ops/math.rb', line 239 def logical_not(x, dtype: nil) RawOps.logical_not(x) end |
.logical_or(x, y, dtype: nil) ⇒ Object
243 244 245 |
# File 'lib/tensorflow/ops/math.rb', line 243 def logical_or(x, y, dtype: nil) RawOps.logical_or(x, y) end |
.logical_xor(x, y, dtype: nil) ⇒ Object
247 248 249 |
# File 'lib/tensorflow/ops/math.rb', line 247 def logical_xor(x, y, dtype: nil) logical_and(logical_or(x, y, dtype: nil), logical_not(logical_and(x, y, dtype: nil), dtype: nil)) end |
.maximum(x, y, dtype: nil) ⇒ Object
251 252 253 |
# File 'lib/tensorflow/ops/math.rb', line 251 def maximum(x, y, dtype: nil) RawOps.maximum(x, y, typeT: dtype) end |
.minimum(x, y, dtype: nil) ⇒ Object
255 256 257 |
# File 'lib/tensorflow/ops/math.rb', line 255 def minimum(x, y, dtype: nil) RawOps.minimum(x, y, typeT: dtype) end |
.mod(x, y, dtype: nil) ⇒ Object
259 260 261 |
# File 'lib/tensorflow/ops/math.rb', line 259 def mod(x, y, dtype: nil) RawOps.mod(x, y, typeT: dtype) end |
.multiply(x, y, dtype: nil) ⇒ Object
263 264 265 |
# File 'lib/tensorflow/ops/math.rb', line 263 def multiply(x, y, dtype: nil) RawOps.mul(x, y, typeT: dtype) end |
.multiply_no_nan(x, y, dtype: nil) ⇒ Object
267 268 269 |
# File 'lib/tensorflow/ops/math.rb', line 267 def multiply_no_nan(x, y, dtype: nil) RawOps.mul_no_nan(x, y, typeT: dtype) end |
.negative(x, dtype: nil) ⇒ Object
271 272 273 |
# File 'lib/tensorflow/ops/math.rb', line 271 def negative(x, dtype: nil) RawOps.neg(x, typeT: dtype) end |
.not_equal(x, y, dtype: nil) ⇒ Object
def nextafter end
278 279 280 |
# File 'lib/tensorflow/ops/math.rb', line 278 def not_equal(x, y, dtype: nil) RawOps.not_equal(x, y, typeT: dtype) end |
.polygamma(a, x, dtype: nil) ⇒ Object
282 283 284 |
# File 'lib/tensorflow/ops/math.rb', line 282 def polygamma(a, x, dtype: nil) RawOps.polygamma(a, x, typeT: dtype) end |
.pow(x, y, dtype: nil) ⇒ Object
def polyval end
289 290 291 |
# File 'lib/tensorflow/ops/math.rb', line 289 def pow(x, y, dtype: nil) RawOps.pow(x, y, typeT: dtype) end |
.real(input, dtype: nil) ⇒ Object
293 294 295 |
# File 'lib/tensorflow/ops/math.rb', line 293 def real(input, dtype: nil) RawOps.real(input, typeT: dtype) end |
.reciprocal(x, dtype: nil) ⇒ Object
297 298 299 |
# File 'lib/tensorflow/ops/math.rb', line 297 def reciprocal(x, dtype: nil) RawOps.reciprocal(x, typeT: dtype) end |
.reduce_any(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
def reduce_all end
307 308 309 310 |
# File 'lib/tensorflow/ops/math.rb', line 307 def reduce_any(input, axis: nil, keepdims: false, dtype: nil) axis ||= reduction_dims(input, dtype: dtype) RawOps.any(input, axis, keep_dims: keepdims) end |
.reduce_max(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
def reduce_logsumexp end
318 319 320 321 |
# File 'lib/tensorflow/ops/math.rb', line 318 def reduce_max(input, axis: nil, keepdims: false, dtype: nil) axis ||= reduction_dims(input, dtype: dtype) RawOps.max(input, axis, keep_dims: keepdims, typeT: dtype) end |
.reduce_mean(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
323 324 325 326 |
# File 'lib/tensorflow/ops/math.rb', line 323 def reduce_mean(input, axis: nil, keepdims: false, dtype: nil) axis ||= reduction_dims(input, dtype: dtype) RawOps.mean(input, axis, keep_dims: keepdims, typeT: dtype) end |
.reduce_min(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
328 329 330 331 |
# File 'lib/tensorflow/ops/math.rb', line 328 def reduce_min(input, axis: nil, keepdims: false, dtype: nil) axis ||= reduction_dims(input, dtype: dtype) RawOps.min(input, axis, keep_dims: keepdims, typeT: dtype) end |
.reduce_prod(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
333 334 335 336 |
# File 'lib/tensorflow/ops/math.rb', line 333 def reduce_prod(input, axis: nil, keepdims: false, dtype: nil) axis ||= reduction_dims(input, dtype: dtype) RawOps.prod(input, axis, keep_dims: keepdims, typeT: dtype) end |
.reduce_std(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
338 339 340 341 |
# File 'lib/tensorflow/ops/math.rb', line 338 def reduce_std(input, axis: nil, keepdims: false, dtype: nil) variance = reduce_variance(input, axis: axis, keepdims: keepdims, dtype: dtype) sqrt(variance, dtype: dtype) end |
.reduce_sum(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
343 344 345 346 |
# File 'lib/tensorflow/ops/math.rb', line 343 def reduce_sum(input, axis: nil, keepdims: false, dtype: nil) axis ||= reduction_dims(input, dtype: dtype) RawOps.sum(input, axis, keep_dims: keepdims, typeT: dtype) end |
.reduce_variance(input, axis: nil, keepdims: false, dtype: nil) ⇒ Object
348 349 350 351 352 |
# File 'lib/tensorflow/ops/math.rb', line 348 def reduce_variance(input, axis: nil, keepdims: false, dtype: nil) means = reduce_mean(input, axis: axis, keepdims: true, dtype: dtype) squared_deviations = RawOps.square(input - means, typeT: dtype) reduce_mean(squared_deviations, axis: axis, keepdims: keepdims, dtype: dtype) end |
.rint(x, dtype: nil) ⇒ Object
354 355 356 |
# File 'lib/tensorflow/ops/math.rb', line 354 def rint(x, dtype: nil) RawOps.rint(x, typeT: dtype) end |
.round(x, dtype: nil) ⇒ Object
358 359 360 |
# File 'lib/tensorflow/ops/math.rb', line 358 def round(x, dtype: nil) RawOps.round(x, typeT: dtype) end |
.rsqrt(x, dtype: nil) ⇒ Object
362 363 364 |
# File 'lib/tensorflow/ops/math.rb', line 362 def rsqrt(x, dtype: nil) RawOps.rsqrt(x, typeT: dtype) end |
.segment_max(data, segment_ids, dtype: nil) ⇒ Object
def scalar_mul end
369 370 371 |
# File 'lib/tensorflow/ops/math.rb', line 369 def segment_max(data, segment_ids, dtype: nil) RawOps.segment_max(data, segment_ids, typeT: dtype) end |
.segment_mean(data, segment_ids, dtype: nil) ⇒ Object
373 374 375 |
# File 'lib/tensorflow/ops/math.rb', line 373 def segment_mean(data, segment_ids, dtype: nil) RawOps.segment_mean(data, segment_ids, typeT: dtype) end |
.segment_min(data, segment_ids, dtype: nil) ⇒ Object
377 378 379 |
# File 'lib/tensorflow/ops/math.rb', line 377 def segment_min(data, segment_ids, dtype: nil) RawOps.segment_min(data, segment_ids, typeT: dtype) end |
.segment_prod(data, segment_ids, dtype: nil) ⇒ Object
381 382 383 |
# File 'lib/tensorflow/ops/math.rb', line 381 def segment_prod(data, segment_ids, dtype: nil) RawOps.segment_prod(data, segment_ids, typeT: dtype) end |
.segment_sum(data, segment_ids, dtype: nil) ⇒ Object
385 386 387 |
# File 'lib/tensorflow/ops/math.rb', line 385 def segment_sum(data, segment_ids, dtype: nil) RawOps.segment_sum(data, segment_ids, typeT: dtype) end |
.sigmoid(x, dtype: nil) ⇒ Object
389 390 391 |
# File 'lib/tensorflow/ops/math.rb', line 389 def sigmoid(x, dtype: nil) RawOps.sigmoid(x, typeT: dtype) end |
.sign(x, dtype: nil) ⇒ Object
393 394 395 |
# File 'lib/tensorflow/ops/math.rb', line 393 def sign(x, dtype: nil) RawOps.sign(x, typeT: dtype) end |
.sin(x, dtype: nil) ⇒ Object
397 398 399 |
# File 'lib/tensorflow/ops/math.rb', line 397 def sin(x, dtype: nil) RawOps.sin(x, typeT: dtype) end |
.sinh(x, dtype: nil) ⇒ Object
401 402 403 |
# File 'lib/tensorflow/ops/math.rb', line 401 def sinh(x, dtype: nil) RawOps.sinh(x, typeT: dtype) end |
.softmax(logits, dtype: nil) ⇒ Object
405 406 407 |
# File 'lib/tensorflow/ops/math.rb', line 405 def softmax(logits, dtype: nil) RawOps.softmax(logits: logits, typeT: dtype) end |
.softplus(features, dtype: nil) ⇒ Object
409 410 411 |
# File 'lib/tensorflow/ops/math.rb', line 409 def softplus(features, dtype: nil) RawOps.softplus(features: features, typeT: dtype) end |
.softsign(features, dtype: nil) ⇒ Object
413 414 415 |
# File 'lib/tensorflow/ops/math.rb', line 413 def softsign(features, dtype: nil) RawOps.softsign(features: features, typeT: dtype) end |
.sqrt(x, dtype: nil) ⇒ Object
417 418 419 |
# File 'lib/tensorflow/ops/math.rb', line 417 def sqrt(x, dtype: nil) RawOps.sqrt(x, typeT: dtype) end |
.square(x, dtype: nil) ⇒ Object
421 422 423 |
# File 'lib/tensorflow/ops/math.rb', line 421 def square(x, dtype: nil) RawOps.square(x, typeT: dtype) end |
.squared_difference(x, y, dtype: nil) ⇒ Object
425 426 427 |
# File 'lib/tensorflow/ops/math.rb', line 425 def squared_difference(x, y, dtype: nil) RawOps.squared_difference(x, y, typeT: dtype) end |
.subtract(x, y, dtype: nil) ⇒ Object
429 430 431 |
# File 'lib/tensorflow/ops/math.rb', line 429 def subtract(x, y, dtype: nil) RawOps.sub(x, y, typeT: dtype) end |
.tan(x, dtype: nil) ⇒ Object
433 434 435 |
# File 'lib/tensorflow/ops/math.rb', line 433 def tan(x, dtype: nil) RawOps.tan(x, typeT: dtype) end |
.tanh(x, dtype: nil) ⇒ Object
437 438 439 |
# File 'lib/tensorflow/ops/math.rb', line 437 def tanh(x, dtype: nil) RawOps.tanh(x, typeT: dtype) end |
.top_k(input, k: nil, sorted: nil, dtype: nil) ⇒ Object
441 442 443 |
# File 'lib/tensorflow/ops/math.rb', line 441 def top_k(input, k: nil, sorted: nil, dtype: nil) RawOps.top_k(input, k: k, sorted: sorted, typeT: dtype) end |
.unsorted_segment_max(data, segment_ids, num_segments, dtype: nil) ⇒ Object
def truediv end
448 449 450 |
# File 'lib/tensorflow/ops/math.rb', line 448 def unsorted_segment_max(data, segment_ids, num_segments, dtype: nil) RawOps.unsorted_segment_max(data, segment_ids, num_segments: num_segments, typeT: dtype) end |
.unsorted_segment_min(data, segment_ids, num_segments, dtype: nil) ⇒ Object
def unsorted_segment_mean end
455 456 457 |
# File 'lib/tensorflow/ops/math.rb', line 455 def unsorted_segment_min(data, segment_ids, num_segments, dtype: nil) RawOps.unsorted_segment_min(data, segment_ids, num_segments: num_segments, typeT: dtype) end |
.unsorted_segment_prod(data, segment_ids, num_segments, dtype: nil) ⇒ Object
459 460 461 |
# File 'lib/tensorflow/ops/math.rb', line 459 def unsorted_segment_prod(data, segment_ids, num_segments, dtype: nil) RawOps.unsorted_segment_prod(data, segment_ids, num_segments: num_segments, typeT: dtype) end |
.unsorted_segment_sum(data, segment_ids, num_segments, dtype: nil) ⇒ Object
def unsorted_segment_sqrt_n end
466 467 468 |
# File 'lib/tensorflow/ops/math.rb', line 466 def unsorted_segment_sum(data, segment_ids, num_segments, dtype: nil) RawOps.unsorted_segment_sum(data, segment_ids, num_segments: num_segments, typeT: dtype) end |
.xdivy(x, y, dtype: nil) ⇒ Object
470 471 472 |
# File 'lib/tensorflow/ops/math.rb', line 470 def xdivy(x, y, dtype: nil) RawOps.xdivy(x, y, typeT: dtype) end |