Class: Tensorflow::Graph::Session
- Inherits:
-
Object
- Object
- Tensorflow::Graph::Session
- Defined in:
- lib/tensorflow/graph/session.rb
Instance Attribute Summary collapse
-
#graph ⇒ Object
Returns the value of attribute graph.
-
#options ⇒ Object
Returns the value of attribute options.
Class Method Summary collapse
Instance Method Summary collapse
- #close ⇒ Object
-
#initialize(graph, options) ⇒ Session
constructor
A new instance of Session.
- #run(operations, feed_dict = {}) ⇒ Object
- #to_ptr ⇒ Object
- #values_to_tensors(values) ⇒ Object
Constructor Details
Instance Attribute Details
#graph ⇒ Object
Returns the value of attribute graph.
22 23 24 |
# File 'lib/tensorflow/graph/session.rb', line 22 def graph @graph end |
#options ⇒ Object
Returns the value of attribute options.
22 23 24 |
# File 'lib/tensorflow/graph/session.rb', line 22 def @options end |
Class Method Details
.finalize(pointer) ⇒ Object
31 32 33 34 35 |
# File 'lib/tensorflow/graph/session.rb', line 31 def self.finalize(pointer) proc do FFI.TF_DeleteSession(pointer) end end |
.run(graph) ⇒ Object
24 25 26 27 28 29 |
# File 'lib/tensorflow/graph/session.rb', line 24 def self.run(graph) session = self.new(graph, SessionOptions.new) result = yield session session.close result end |
Instance Method Details
#close ⇒ Object
135 136 137 138 139 |
# File 'lib/tensorflow/graph/session.rb', line 135 def close Status.check do |status| FFI.TF_CloseSession(self, status) end end |
#run(operations, feed_dict = {}) ⇒ Object
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# File 'lib/tensorflow/graph/session.rb', line 48 def run(operations, feed_dict={}) operations = Array(operations).flatten.compact key_outputs = feed_dict.keys.map(&:outputs).flatten keys_ptr = FFI::Output.array_to_ptr(key_outputs.map(&:output)) values = self.values_to_tensors(feed_dict) values_ptr = ::FFI::MemoryPointer.new(:pointer, values.length) values_ptr.write_array_of_pointer(values) # Gather up all the outputs for each operation outputs = operations.map do |operation| case operation when Operation, Variable operation.outputs when OperationOutput operation else raise(Error::UnimplementedError, "Unsupported operation type: #{operation}") end end.flatten outputs_ptr = FFI::Output.array_to_ptr(outputs.map(&:output)) results_ptr = ::FFI::MemoryPointer.new(:pointer, outputs.length) # Gather up all the targets targets = operations.map do |operation| case operation when Operation, Variable operation when OperationOutput operation.operation else raise("Unsupported target: #{operation}") end end targets_ptr = ::FFI::MemoryPointer.new(:pointer, targets.length) targets_ptr.write_array_of_pointer(targets) = nil = nil Status.check do |status| FFI.TF_SessionRun(self, , # Inputs keys_ptr, values_ptr, feed_dict.keys.length, # Outputs outputs_ptr, results_ptr, outputs.length, # Targets targets_ptr, operations.length, , status) end results = results_ptr.read_array_of_pointer(outputs.length).map.with_index do |pointer, i| output = outputs[i] Tensor.from_pointer(pointer).value end # For each operation we want to return a single result start = 0 result = operations.reduce(Array.new) do |array, operation| length = case operation when Operation, Variable operation.outputs.length when OperationOutput 1 else raise(Error::UnimplementedError, "Unsupported operation type: #{operation}") end if length == 0 array << nil else array.concat(results[start, length]) start += length end array end if operations.length == 1 && results.length == 1 result.first else result end end |
#to_ptr ⇒ Object
44 45 46 |
# File 'lib/tensorflow/graph/session.rb', line 44 def to_ptr @pointer end |
#values_to_tensors(values) ⇒ Object
141 142 143 144 145 146 147 148 149 150 151 152 153 |
# File 'lib/tensorflow/graph/session.rb', line 141 def values_to_tensors(values) values.map do |key, value| case value when Tensor value else # The value dtype needs to match the key dtype raise(Error::UnknownError, "Cannot determine dtype: #{key}") if key.num_outputs != 1 dtype = key.output_types.first Tensor.new(value, dtype: dtype) end end end |