Class: Tensorflow::Graph::OperationDescription
- Inherits:
-
Object
- Object
- Tensorflow::Graph::OperationDescription
- Defined in:
- lib/tensorflow/graph/operation_description.rb
Instance Attribute Summary collapse
-
#graph ⇒ Object
readonly
Returns the value of attribute graph.
-
#name ⇒ Object
readonly
Returns the value of attribute name.
-
#op_def ⇒ Object
readonly
Returns the value of attribute op_def.
Instance Method Summary collapse
- #add_input(operation) ⇒ Object
- #add_input_list(operations) ⇒ Object
- #capture(operation) ⇒ Object
- #capture_inputs(operation, attrs) ⇒ Object
- #check_input(arg_def, input, dtype) ⇒ Object
- #device=(value) ⇒ Object
- #figure_dtype(attrs, inputs) ⇒ Object
-
#initialize(graph, op_type, inputs, attrs) ⇒ OperationDescription
constructor
A new instance of OperationDescription.
- #save ⇒ Object
- #setup_attr(name, value) ⇒ Object
- #setup_attrs(**attrs) ⇒ Object
- #setup_control_input(control_input) ⇒ Object
- #setup_control_inputs(control_inputs) ⇒ Object
- #setup_input(index, value, attrs) ⇒ Object
- #setup_inputs(inputs, attrs) ⇒ Object
- #to_ptr ⇒ Object
Constructor Details
#initialize(graph, op_type, inputs, attrs) ⇒ OperationDescription
Returns a new instance of OperationDescription.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
# File 'lib/tensorflow/graph/operation_description.rb', line 6 def initialize(graph, op_type, inputs, attrs) @graph = graph @op_def = case op_type when Function op_type.function_def.signature else self.graph.op_def(op_type) end raise(Error::InvalidArgumentError, "Invalid op type: #{op_type}") unless @op_def raw_name = attrs.delete(:name)&.to_s || self.op_def.name @name = self.graph.scoped_name(raw_name) @pointer = FFI.TF_NewOperation(graph, self.op_def.name, @name) inputs = Array(inputs) setup_inputs(inputs, attrs) setup_control_inputs(graph.control_inputs) setup_attrs(**attrs) end |
Instance Attribute Details
#graph ⇒ Object (readonly)
Returns the value of attribute graph.
4 5 6 |
# File 'lib/tensorflow/graph/operation_description.rb', line 4 def graph @graph end |
#name ⇒ Object (readonly)
Returns the value of attribute name.
4 5 6 |
# File 'lib/tensorflow/graph/operation_description.rb', line 4 def name @name end |
#op_def ⇒ Object (readonly)
Returns the value of attribute op_def.
4 5 6 |
# File 'lib/tensorflow/graph/operation_description.rb', line 4 def op_def @op_def end |
Instance Method Details
#add_input(operation) ⇒ Object
174 175 176 177 178 179 180 181 182 183 184 185 |
# File 'lib/tensorflow/graph/operation_description.rb', line 174 def add_input(operation) # Check to see if the operation has multiple outputs, and if it does, we need to pack them together # to fit into one input if operation.is_a?(OperationOutput) FFI.TF_AddInput(self, operation) elsif operation.num_outputs > 1 packed = Tensorflow.pack(operation, n: operation.num_outputs) FFI.TF_AddInput(self, packed.outputs.first) else FFI.TF_AddInput(self, operation.outputs.first) end end |
#add_input_list(operations) ⇒ Object
187 188 189 190 191 192 |
# File 'lib/tensorflow/graph/operation_description.rb', line 187 def add_input_list(operations) # Operation can represent multiple operations *or* one operation with multiple outputs (like SPLIT) outputs = Array(operations).map(&:outputs).flatten outputs_ptr = FFI::Output.array_to_ptr(outputs.map(&:output)) FFI.TF_AddInputList(self, outputs_ptr, outputs.length) end |
#capture(operation) ⇒ Object
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# File 'lib/tensorflow/graph/operation_description.rb', line 112 def capture(operation) if self.op_def.is_stateful raise(Error::InvalidArgumentError, "Cannot capture a stateful node (name: #{operation.name}, type: #{operation.op_type})") elsif operation.op_type == "Placeholder" raise(Error::InvalidArgumentError, "Cannot capture a placeholder by value (name: #{operation.name}, type: #{operation.op_type})") end attrs = operation.attributes.reduce(Hash.new) do |hash, attr| hash[attr.name.to_sym] = attr.value hash end attrs[:name] = operation.name captured_inputs = self.capture_inputs(operation, attrs) self.graph.create_operation(operation.op_type, captured_inputs, **attrs) end |
#capture_inputs(operation, attrs) ⇒ Object
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# File 'lib/tensorflow/graph/operation_description.rb', line 79 def capture_inputs(operation, attrs) # First capture the inputs inputs = operation.inputs.map do |input| self.capture(input.operation) end # We now have to group the inputs together. For example, a TensorSlice dataset has 1 input argument # which a list. But the number of inputs returned by the operation is actually the number of items in # the list, so its usually more than one. We need to group them into one array to be able to call # the operation to create a captured copy. i = 0 operation.op_def.input_arg.reduce(Array.new) do |result, input_arg| if !input_arg.number_attr.empty? input_len = attrs[input_arg.number_attr.to_sym] is_sequence = true elsif !input_arg.type_list_attr.empty? input_len = attrs[input_arg.type_list_attr.to_sym].length is_sequence = true else input_len = 1 is_sequence = false end if is_sequence result << inputs[i..i+input_len] else result << inputs[i] end i += input_len result end end |
#check_input(arg_def, input, dtype) ⇒ Object
129 130 131 132 133 134 135 136 137 138 139 140 141 |
# File 'lib/tensorflow/graph/operation_description.rb', line 129 def check_input(arg_def, input, dtype) case input when Operation self.graph.equal?(input.graph) ? input : capture(input) when OperationOutput input when Variable arg_def.type == :DT_RESOURCE ? input.handle : input.value_handle else input_name = "#{self.name}/#{arg_def.name}" Tensorflow.constant(input, name: input_name, dtype: dtype) end end |
#device=(value) ⇒ Object
56 57 58 |
# File 'lib/tensorflow/graph/operation_description.rb', line 56 def device=(value) FFI.TF_SetDevice(self, value) end |
#figure_dtype(attrs, inputs) ⇒ Object
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# File 'lib/tensorflow/graph/operation_description.rb', line 26 def figure_dtype(attrs, inputs) attr_def = self.op_def.attr.detect do |attr_def| attr_def.type == 'type' end result = attr_def ? attrs[attr_def.name.to_sym] : nil unless result inputs.each do |input| case input when Operation return input.output_types.first when Variable return input.dtype end end end result end |
#save ⇒ Object
49 50 51 52 53 54 |
# File 'lib/tensorflow/graph/operation_description.rb', line 49 def save Status.check do |status| ptr = FFI.TF_FinishOperation(self, status) Operation.new(self.graph, ptr) end end |
#setup_attr(name, value) ⇒ Object
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# File 'lib/tensorflow/graph/operation_description.rb', line 200 def setup_attr(name, value) attr_def = self.op_def.attr.detect do |attr_def| name.to_s == attr_def.name end unless attr_def raise(Error::UnknownError, "Unknown attribute: #{name}") end case attr_def.type when 'bool' FFI.TF_SetAttrBool(self, attr_def.name, value ? 1 : 0) when 'int' FFI.TF_SetAttrInt(self, attr_def.name, value) when 'float' FFI.TF_SetAttrFloat(self, attr_def.name, value) when 'func' function_name = value.is_a?(Function) ? value.name : value FFI.TF_SetAttrFuncName(self, attr_def.name, function_name, function_name.length) when 'shape' pointer = ::FFI::MemoryPointer.new(:int64, value.length) pointer.write_array_of_int64(value) FFI.TF_SetAttrShape(self, attr_def.name, pointer, value.length) when 'list(shape)' dims_pointer = ::FFI::MemoryPointer.new(:pointer, value.length) num_dims_pointer = ::FFI::MemoryPointer.new(:int32, value.length) value.each_with_index do |shape, i| dim_pointer = ::FFI::MemoryPointer.new(:int64, shape.length) dim_pointer.write_array_of_int64(shape) dims_pointer.put_pointer(i * ::FFI.type_size(:pointer), dim_pointer) num_dims_pointer.put_int32(i * ::FFI.type_size(:int32), shape.length) end FFI.TF_SetAttrShapeList(self, attr_def.name, dims_pointer, num_dims_pointer, value.length) when 'string' FFI.TF_SetAttrString(self, attr_def.name, value, value.length) when 'list(string)' a = 1 #FFI.TF_SetAttrString(self, attr_def.name, value, value.length) when 'tensor' Status.check do |status| FFI.TF_SetAttrTensor(self, attr_def.name, value, status) end when 'type' FFI.TF_SetAttrType(self, attr_def.name, value) when 'list(type)' value_ptr = ::FFI::MemoryPointer.new(FFI::DataType.native_type.size, value.count) value.each_with_index do |a_value, i| value_ptr.put_int32(i * FFI::DataType.native_type.size, FFI::DataType[a_value]) end FFI.TF_SetAttrTypeList(self, attr_def.name, value_ptr, value.count) else raise(Error::UnimplementedError, "Unsupported attribute. #{self.op_def.name} - #{attr_def.name}") end end |
#setup_attrs(**attrs) ⇒ Object
194 195 196 197 198 |
# File 'lib/tensorflow/graph/operation_description.rb', line 194 def setup_attrs(**attrs) attrs.each do |attr_name, attr_value| self.setup_attr(attr_name, attr_value) end end |
#setup_control_input(control_input) ⇒ Object
66 67 68 69 70 71 72 73 74 75 76 77 |
# File 'lib/tensorflow/graph/operation_description.rb', line 66 def setup_control_input(control_input) control_input = case control_input when Operation control_input when Variable control_input.handle else raise(Error::InvalidArgumentError, "Invalid control input") end FFI.TF_AddControlInput(self, control_input) end |
#setup_control_inputs(control_inputs) ⇒ Object
60 61 62 63 64 |
# File 'lib/tensorflow/graph/operation_description.rb', line 60 def setup_control_inputs(control_inputs) control_inputs.each do |control_input| setup_control_input(control_input) end end |
#setup_input(index, value, attrs) ⇒ Object
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# File 'lib/tensorflow/graph/operation_description.rb', line 149 def setup_input(index, value, attrs) arg_def = self.op_def.input_arg[index] dtype = attrs[arg_def.type_attr.to_sym] # Value can be an operation with multiple outputs. For example calling PACK with an input operation of SPLIT checked_value = if (!arg_def.number_attr.empty? || !arg_def.type_list_attr.empty?) && value.is_a?(Array) value.map do |sub_value| self.check_input(arg_def, sub_value, dtype) end else self.check_input(arg_def, value, dtype) end if !arg_def.type_list_attr.empty? # This input is a heterogeneous list self.add_input_list(checked_value) elsif !arg_def.number_attr.empty? # This input is a homogeneous list self.add_input_list(checked_value) else # This input is a single item self.add_input(checked_value) end end |
#setup_inputs(inputs, attrs) ⇒ Object
143 144 145 146 147 |
# File 'lib/tensorflow/graph/operation_description.rb', line 143 def setup_inputs(inputs, attrs) inputs.each_with_index do |input, index| self.setup_input(index, input, attrs) end end |
#to_ptr ⇒ Object
45 46 47 |
# File 'lib/tensorflow/graph/operation_description.rb', line 45 def to_ptr @pointer end |