Module: TensorStream::Utils

Included in:
TensorStream, Images, Train::LearningRateDecay, Train::SlotCreator
Defined in:
lib/tensor_stream/utils.rb

Instance Method Summary collapse

Instance Method Details

#__v_scope_nameObject


126
127
128
# File 'lib/tensor_stream/utils.rb', line 126

def __v_scope_name
  Thread.current[:tensor_stream_variable_scope].map(&:name).compact.reject(&:empty?).join("/")
end

#apply_data_type_coercion(*args) ⇒ Object

Auto cast ruby constant data types to the same tensor types of other operands


299
300
301
302
# File 'lib/tensor_stream/utils.rb', line 299

def apply_data_type_coercion(*args)
  coerced_type = check_data_types(*args)
  args.map { |a| a.is_a?(Tensor) ? a : convert_to_tensor(a, dtype: coerced_type) }
end

#assign(ref, value, name: nil) ⇒ Object


200
201
202
203
# File 'lib/tensor_stream/utils.rb', line 200

def assign(ref, value, name: nil)
  raise "#{ref.name} not a variable" unless ref.is_a?(Variable)
  ref.assign(value, name: name)
end

#check_allowed_types(input, types) ⇒ Object


279
280
281
282
283
284
# File 'lib/tensor_stream/utils.rb', line 279

def check_allowed_types(input, types)
  return input unless input.is_a?(Tensor)
  return input if input.data_type.nil?

  raise "#{input.source}: Parameter data type #{input.data_type} passed not in #{types.join(",")}" unless types.include?(input.data_type.to_sym)
end

#check_data_types(*args) ⇒ Object


286
287
288
289
290
291
292
293
294
# File 'lib/tensor_stream/utils.rb', line 286

def check_data_types(*args)
  unique_types = args.select { |a| a.is_a?(Tensor) }. map { |a| DataTypeUtils.norm_dtype(a.data_type) }.uniq

  if unique_types.size > 1
    raise TensorStream::ValueError, "Value Error: Tensor conversion requested dtypes are different -> #{unique_types}"
  end

  unique_types.first
end

#check_if_dense(value, expected_shape = nil) ⇒ Object

Check to make sure passed array is dense


263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# File 'lib/tensor_stream/utils.rb', line 263

def check_if_dense(value, expected_shape = nil)
  return unless value.is_a?(Array)
  return if value.empty?

  expected_shape ||= shape_eval(value)

  s = expected_shape.shift
  raise TensorStream::ValueError, "Argument must be a dense tensor: #{value}, expected size #{s} got #{value.size}" if value.size != s

  return if expected_shape.empty?

  value.each do |item|
    check_if_dense(item, expected_shape.dup)
  end
end

#colocate_with(op, ignore_existing: false) ⇒ Object


147
148
149
150
# File 'lib/tensor_stream/utils.rb', line 147

def colocate_with(op, ignore_existing: false)
  # noop for now
  yield
end

#constant(value, dtype: nil, shape: nil, internal: false, name: "Const") ⇒ Object


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# File 'lib/tensor_stream/utils.rb', line 160

def constant(value, dtype: nil, shape: nil, internal: false, name: "Const")
  shared_options = {const: true, value: value, name: name, internal: internal}

  if value.is_a?(Float)
    TensorStream::Constant.new(dtype || :float32, 0, shape || [], shared_options)
  elsif value.is_a?(Integer)
    TensorStream::Constant.new(dtype || :int32, 0, shape || [], shared_options)
  elsif value.is_a?(String)
    TensorStream::Constant.new(dtype || :string, 0, shape || [], shared_options)
  elsif !!value == value
    TensorStream::Constant.new(dtype || :boolean, 0, shape || [], shared_options)
  elsif value.is_a?(Array)
    dimension = shape || shape_eval(value)
    rank = dimension.size
    TensorStream.check_if_dense(value)

    cur_dtype = dtype || Tensor.detect_type(value.flatten.last)
    value = Tensor.cast_dtype(value, cur_dtype) unless dtype.nil?

    shared_options[:value] = value
    TensorStream::Constant.new(cur_dtype, rank, dimension, shared_options)
  end
end

#control_dependencies(control_inputs, &block) ⇒ Object


237
238
239
# File 'lib/tensor_stream/utils.rb', line 237

def control_dependencies(control_inputs, &block)
  TensorStream.get_default_graph.control_dependencies(control_inputs, &block)
end

#convert_to_tensor(value, dtype: nil, name: nil) ⇒ Object


241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# File 'lib/tensor_stream/utils.rb', line 241

def convert_to_tensor(value, dtype: nil, name: nil)
  return value if value.is_a?(Tensor)
  return convert_to_tensor(value.call) if value.is_a?(Proc)
  # raise "Invalid tensor value" if value.nil?

  if value.is_a?(Array) && value.detect { |v| v.is_a?(Tensor) }
    return TensorStream.stack(value) if value.size > 1

    return TensorStream.expand_dims(value[0], 0)
  end

  if value.is_a?(TensorShape)
    value = value.shape
  end

  check_if_dense(value)
  i_cons(value, dtype: dtype || Tensor.detect_type(value), name: name)
end

#device(device_uri, &block) ⇒ Object


101
102
103
# File 'lib/tensor_stream/utils.rb', line 101

def device(device_uri, &block)
  get_default_graph.device(device_uri, &block)
end

#disable_eager_executionObject


23
24
25
# File 'lib/tensor_stream/utils.rb', line 23

def disable_eager_execution
  TensorStream::Graph.get_default_graph.disable_eager_execution
end

#dynamic_stitch(indices, data, name: nil) ⇒ Object


188
189
190
# File 'lib/tensor_stream/utils.rb', line 188

def dynamic_stitch(indices, data, name: nil)
  TensorStream::DynamicStitch.new(:dynamic_stitch, [indices, data], name: name)
end

#enable_eager_executionObject


19
20
21
# File 'lib/tensor_stream/utils.rb', line 19

def enable_eager_execution
  TensorStream::Graph.get_default_graph.enable_eager_execution
end

#executing_eagerly?Boolean

Returns:

  • (Boolean)

27
28
29
# File 'lib/tensor_stream/utils.rb', line 27

def executing_eagerly?
  TensorStream::Graph.get_default_graph.executing_eagerly?
end

#float32Object


3
4
5
# File 'lib/tensor_stream/utils.rb', line 3

def float32
  Types.float32
end

#get_collection(name, options = {}) ⇒ Object


196
197
198
# File 'lib/tensor_stream/utils.rb', line 196

def get_collection(name, options = {})
  Graph.get_default_graph.get_collection(name, options)
end

#get_default_graphObject


11
12
13
# File 'lib/tensor_stream/utils.rb', line 11

def get_default_graph
  TensorStream::Graph.get_default_graph
end

#get_variable(name, dtype: nil, shape: nil, initializer: nil, trainable: true, collections: nil, validate_shape: false) ⇒ Object


192
193
194
# File 'lib/tensor_stream/utils.rb', line 192

def get_variable(name, dtype: nil, shape: nil, initializer: nil, trainable: true, collections: nil, validate_shape: false)
  get_variable_scope.get_variable(name, dtype: dtype, shape: shape, initializer: initializer, trainable: trainable, collections: collections)
end

#get_variable_scopeObject


116
117
118
119
120
121
122
123
124
# File 'lib/tensor_stream/utils.rb', line 116

def get_variable_scope
  unless Thread.current[:tensor_stream_variable_scope]
    variable_scope = VariableScope.new
    Thread.current[:tensor_stream_variable_scope] = [variable_scope]
    return variable_scope
  end

  Thread.current[:tensor_stream_variable_scope].last
end

#global_variables_initializerObject


211
212
213
# File 'lib/tensor_stream/utils.rb', line 211

def global_variables_initializer
  TensorStream::Variable.global_variables_initializer
end

#graphObject


7
8
9
# File 'lib/tensor_stream/utils.rb', line 7

def graph
  TensorStream::Graph.new
end

#group(inputs, name: nil) ⇒ Object


184
185
186
# File 'lib/tensor_stream/utils.rb', line 184

def group(inputs, name: nil)
  TensorStream::ControlFlow.new(:group, inputs, nil, name: name)
end

#imageObject


223
224
225
# File 'lib/tensor_stream/utils.rb', line 223

def image
  TensorStream::Images
end

#layersObject


156
157
158
# File 'lib/tensor_stream/utils.rb', line 156

def layers
  TensorStream::Layers
end

#list_local_devicesObject

List available evaluators + devices in the current local environment Returns:

  • An array containing the names of those devices


35
36
37
38
39
40
41
42
# File 'lib/tensor_stream/utils.rb', line 35

def list_local_devices
  local_name = "job:localhost"
  TensorStream::Evaluator.evaluators.collect { |k, v|
    v[:class].query_supported_devices.collect do |device_str|
      [local_name, "ts:#{k}:#{device_str.name}"].join("/")
    end
  }.flatten
end

#mathObject


219
220
221
# File 'lib/tensor_stream/utils.rb', line 219

def math
  TensorStream::Maths
end

#name_scope(name, default_name = nil, default: nil, values: nil) ⇒ Object


105
106
107
108
109
110
111
112
113
114
# File 'lib/tensor_stream/utils.rb', line 105

def name_scope(name, default_name = nil, default: nil, values: nil)
  if values
    graph_count = values.select { |v| v.is_a?(Tensor) }.map(&:graph).map(&:object_id).uniq.size
    raise "values are not on the same graph" if graph_count > 1
  end

  get_default_graph.name_scope(name || default_name || default) do |scope|
    yield scope if block_given?
  end
end

#placeholder(dtype, shape: nil, name: nil) ⇒ Object

Inserts a placeholder for a tensor that will be always fed.


207
208
209
# File 'lib/tensor_stream/utils.rb', line 207

def placeholder(dtype, shape: nil, name: nil)
  TensorStream::Placeholder.new(dtype, nil, shape, name: name)
end

#program {|_self| ... } ⇒ Object

Yields:

  • (_self)

Yield Parameters:


152
153
154
# File 'lib/tensor_stream/utils.rb', line 152

def program
  yield self
end

#reset_default_graphObject


15
16
17
# File 'lib/tensor_stream/utils.rb', line 15

def reset_default_graph
  TensorStream::Graph.get_default_graph.reset
end

#session(evaluator = nil, thread_pool_class: Concurrent::ImmediateExecutor, log_device_placement: false, profile_enabled: false) {|session| ... } ⇒ Object

Creates a session context where operations can be executed

Args:

evaluator: Specific evaluator to use, otherwise the best evaluator will automatically be determined

Options:

thread_pool_class: Class to use to manage thread pooling
log_device_placement: Show assigned device/evalutor for each tensor op
profile_enabled: Log performance metrics for each operation

Yields:


140
141
142
143
144
145
# File 'lib/tensor_stream/utils.rb', line 140

def session(evaluator = nil, thread_pool_class: Concurrent::ImmediateExecutor, log_device_placement: false, profile_enabled: false)
  session = TensorStream::Session.new(evaluator, thread_pool_class: thread_pool_class, log_device_placement: log_device_placement, profile_enabled: profile_enabled)
  yield session if block_given?

  session
end

#set_random_seed(seed) ⇒ Object

Sets random seed to use for the default graph


233
234
235
# File 'lib/tensor_stream/utils.rb', line 233

def set_random_seed(seed)
  TensorStream.get_default_graph.random_seed = seed
end

#trainObject


215
216
217
# File 'lib/tensor_stream/utils.rb', line 215

def train
  TensorStream::Trainer
end

#trainable_variablesObject


227
228
229
# File 'lib/tensor_stream/utils.rb', line 227

def trainable_variables
  TensorStream.get_default_graph.get_collection(TensorStream::GraphKeys::TRAINABLE_VARIABLES)
end

#variable(value, name: nil, initializer: nil, graph: nil, dtype: nil, trainable: true) ⇒ Object

Creates a variable A variable maintains state across sessions


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# File 'lib/tensor_stream/utils.rb', line 47

def variable(value, name: nil, initializer: nil, graph: nil, dtype: nil, trainable: true)
  common_options = {
    initializer: TensorStream.convert_to_tensor(initializer || value),
    name: name,
    graph: graph,
    dtype: dtype,
    trainable: trainable,
  }
  tensor = if value.is_a?(String)
             i_var(dtype || :string, 0, [], get_variable_scope, common_options)
           elsif value.is_a?(Integer)
             i_var(dtype || :int32, 0, [], get_variable_scope, common_options)
           elsif value.is_a?(Float)
             i_var(dtype || :float32, 0, [], get_variable_scope, common_options)
           else
             i_var(dtype || :float32, 0, nil, get_variable_scope, common_options)
           end
  tensor
end

#variable_scope(scope = nil, default_name = nil, reuse: nil, initializer: nil) ⇒ Object

Defines a variable context manager


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# File 'lib/tensor_stream/utils.rb', line 69

def variable_scope(scope = nil, default_name = nil, reuse: nil, initializer: nil)
  Thread.current[:tensor_stream_variable_scope] ||= [VariableScope.new]

  # uniquenifier
  if scope.nil? && default_name
    same_names = get_variable_scope.used_names.select { |s| s.start_with?(default_name) }
    new_name = default_name
    index = 1
    while same_names.include?(new_name)
      new_name = "#{default_name}_#{index}"
      index += 1
    end
    scope = new_name
  end

  variable_scope = VariableScope.new(name: scope, reuse: reuse, initializer: initializer)
  get_variable_scope.register_name(scope || "")
  Thread.current[:tensor_stream_variable_scope] << variable_scope
  scope_name = __v_scope_name
  if block_given?
    begin
      TensorStream.get_default_graph.name_scope(scope) do
        yield(scope_name)
      end
    ensure
      Thread.current[:tensor_stream_variable_scope].pop
    end
  else
    variable_scope
  end
end