Method: TensorStream::MathGradients._compute_derivative
- Defined in:
- lib/tensor_stream/math_gradients.rb
._compute_derivative(node, grad) ⇒ Object
TODO: refactor and implement registerGradient
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# File 'lib/tensor_stream/math_gradients.rb', line 52 def self._compute_derivative(node, grad) node.graph.name_scope("#{node.name}_grad") do x = node.inputs[0] if node.inputs[0] y = node.inputs[1] if node.inputs[1] z = node.inputs[2] if node.inputs[2] case node.operation when :add_n return [grad] * node.inputs.size when :asin ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) den = ts.sqrt(ts.subtract(one, x2)) inv = ts.reciprocal(den) grad * inv end when :acos ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) den = ts.sqrt(ts.subtract(one, x2)) inv = ts.reciprocal(den) -grad * inv end when :atan ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) inv = ts.reciprocal(ts.add(one, x2)) grad * inv end when :squared_difference sx = i_op(:shape, x) sy = i_op(:shape, y) rx, ry = _broadcast_gradient_args(sx, sy) x_grad = ts.mul(2.0, grad) * (x - y) [ts.reshape(ts.reduce_sum(x_grad, rx), sx), ts.reshape(-ts.reduce_sum(x_grad, ry), sy),] when :abs grad * ts.sign(x) when :exp grad * node when :identity, :print grad when :tile input_shape = ts.shape(x) split_shape = ts.reshape(ts.transpose(ts.stack([y, input_shape])), [-1]) axes = ts.range(0, ts.size(split_shape), 2) input_grad = ts.reduce_sum(ts.reshape(grad, split_shape), axes) [input_grad, nil] when :reciprocal -grad * (ts.constant(1, dtype: x.dtype) / x**2) when :sqrt ts.constant(1, dtype: x.dtype) / (ts.constant(2, dtype: x.dtype) * ts.sqrt(x)) * grad when :stop_gradient ts.zeros_like(grad) when :square y = ts.constant(2.0, dtype: x.dtype) ts.multiply(grad, ts.multiply(x, y)) when :where x_mask = i_op(:where, x, i_op(:ones_like, y), i_op(:zeros_like, z)) y_mask = i_op(:where, x, i_op(:zeros_like, y), i_op(:ones_like, z)) [nil, x_mask * grad, y_mask * grad] when :mean sum_grad = _sum_grad(x, y, grad)[0] input_shape = ts.shape(x) output_shape = ts.shape(node) factor = _safe_shape_div(ts.reduce_prod(input_shape), ts.reduce_prod(output_shape)) [ts.div(sum_grad, ts.cast(factor, sum_grad.data_type)), nil] when :log1p grad * ts.reciprocal(i_cons(1, dtype: grad.data_type) + x) when :sigmoid_grad gb = grad * y [gb - 2.0 * gb * x, i_op(:sigmoid_grad, x, grad)] when :softmax i_op(:softmax_grad, x, grad) when :softmax_cross_entropy_with_logits_v2 output = node logits = node.inputs[0] [_broadcast_mul(grad, output[1]), -ts.nn.log_softmax(logits)] when :sparse_softmax_cross_entropy_with_logits output = node [_broadcast_mul(grad, output[1]), nil] when :zeros_like # non differentiable nil when :transpose return [ts.transpose(grad, ts.invert_permutation(y)), nil] when :index # hack!! not sure how to fix this yet return grad if %i[softmax_cross_entropy_with_logits_v2 sparse_softmax_cross_entropy_with_logits].include?(node.inputs[0].operation) if node.inputs[0].shape.known? && node.inputs[1].const_value multiplier = node.inputs[0].shape.shape[0] filler = ts.zeros_like(grad) res = Array.new(multiplier) { |index| index == node.inputs[1].const_value ? grad : filler } [res] end when :squeeze _reshape_to_input(node, grad) when :concat _concat_grad_helper(node, grad, 1, node.inputs.size, 0) when :stack res = ts.unstack(grad, num: node.inputs.size, axis: node.[:axis]) Array.new(node.inputs.size) { |i| res[i] } when :unstack ts.stack(grad, axis: node.[:axis]) when :conv2d _Conv2DGrad(node, grad) when :flow_dynamic_stitch num_values = node.inputs.size / 2 indices_grad = [nil] * num_values inputs = (0...num_values).map { |i| _int32(node, node.inputs[i]) } values_grad = inputs.map { |inp| TensorStream.gather(grad, inp) } indices_grad + values_grad when :gather [_op(:gather_grad, grad, node.inputs[1], TensorStream.shape(node.inputs[0])), nil] else TensorStream::OpMaker.gradient_op(self, node, grad) end end end |