Class: TensorStream::MathGradients

Inherits:
Object
  • Object
show all
Extended by:
OpHelper
Defined in:
lib/tensor_stream/math_gradients.rb

Overview

Class that provides auto-differentiation Most gradients are ported over from tensorflow’s math_grad.py

Class Method Summary collapse

Methods included from OpHelper

_op, cons, format_source, fp_type?, i_cons, i_op, i_var, int_type?, reduced_shape, shape_eval, shape_full_specified, shapes_fully_specified_and_equal

Class Method Details

._broadcast_gradient_args(input_a, input_b) ⇒ Object



178
179
180
181
# File 'lib/tensor_stream/math_gradients.rb', line 178

def self._broadcast_gradient_args(input_a, input_b)
  res = _op(:broadcast_gradient_args, input_a, input_b)
  [res[0], res[1]]
end

._broadcast_mul(vec, mat) ⇒ Object



224
225
226
227
# File 'lib/tensor_stream/math_gradients.rb', line 224

def self._broadcast_mul(vec, mat)
  vec = ts.expand_dims(vec, -1)
  vec * mat
end

._broadcast_transform(input_a, input_b) ⇒ Object



183
184
185
# File 'lib/tensor_stream/math_gradients.rb', line 183

def self._broadcast_transform(input_a, input_b)
  _op(:broadcast_transform, input_a, input_b)
end

._compute_derivative(node, grad) ⇒ Object

TODO: refactor and implement registerGradient



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# File 'lib/tensor_stream/math_gradients.rb', line 52

def self._compute_derivative(node, grad)
  node.graph.name_scope("#{node.name}_grad") do
    x = node.inputs[0] if node.inputs[0]
    y = node.inputs[1] if node.inputs[1]
    z = node.inputs[2] if node.inputs[2]

    case node.operation
    when :add_n
      return [grad] * node.inputs.size
    when :asin
      ts.control_dependencies([grad]) do
        x2 = ts.square(x)
        one = ts.constant(1, dtype: grad.data_type)
        den = ts.sqrt(ts.subtract(one, x2))
        inv = ts.reciprocal(den)
        grad * inv
      end
    when :acos
      ts.control_dependencies([grad]) do
        x2 = ts.square(x)
        one = ts.constant(1, dtype: grad.data_type)
        den = ts.sqrt(ts.subtract(one, x2))
        inv = ts.reciprocal(den)
        -grad * inv
      end
    when :atan
      ts.control_dependencies([grad]) do
        x2 = ts.square(x)
        one = ts.constant(1, dtype: grad.data_type)
        inv = ts.reciprocal(ts.add(one, x2))
        grad * inv
      end
    when :squared_difference
      sx = i_op(:shape, x)
      sy = i_op(:shape, y)
      rx, ry = _broadcast_gradient_args(sx, sy)

      x_grad = ts.mul(2.0, grad) * (x - y)

      [ts.reshape(ts.reduce_sum(x_grad, rx), sx),
       ts.reshape(-ts.reduce_sum(x_grad, ry), sy),]
    when :abs
      grad * ts.sign(x)
    when :exp
      grad * node
    when :identity, :print
      grad
    when :tile
      input_shape = ts.shape(x)
      split_shape = ts.reshape(ts.transpose(ts.stack([y, input_shape])), [-1])
      axes = ts.range(0, ts.size(split_shape), 2)
      input_grad = ts.reduce_sum(ts.reshape(grad, split_shape), axes)

      [input_grad, nil]
    when :reciprocal
      -grad * (ts.constant(1, dtype: x.dtype) / x**2)
    when :sqrt
      ts.constant(1, dtype: x.dtype) / (ts.constant(2, dtype: x.dtype) * ts.sqrt(x)) * grad
    when :stop_gradient
      ts.zeros_like(grad)
    when :square
      y = ts.constant(2.0, dtype: x.dtype)
      ts.multiply(grad, ts.multiply(x, y))
    when :where
      x_mask = i_op(:where, x, i_op(:ones_like, y), i_op(:zeros_like, z))
      y_mask = i_op(:where, x, i_op(:zeros_like, y), i_op(:ones_like, z))
      [nil, x_mask * grad, y_mask * grad]
    when :mean
      sum_grad = _sum_grad(x, y, grad)[0]
      input_shape = ts.shape(x)
      output_shape = ts.shape(node)
      factor = _safe_shape_div(ts.reduce_prod(input_shape), ts.reduce_prod(output_shape))
      [ts.div(sum_grad, ts.cast(factor, sum_grad.data_type)), nil]
    when :log1p
      grad * ts.reciprocal(i_cons(1, dtype: grad.data_type) + x)
    when :sigmoid_grad
      gb = grad * y
      [gb - 2.0 * gb * x, i_op(:sigmoid_grad, x, grad)]
    when :softmax
      i_op(:softmax_grad, x, grad)
    when :softmax_cross_entropy_with_logits_v2
      output = node
      logits = node.inputs[0]
      [_broadcast_mul(grad, output[1]), -ts.nn.log_softmax(logits)]
    when :sparse_softmax_cross_entropy_with_logits
      output = node
      [_broadcast_mul(grad, output[1]), nil]
     when :zeros_like
      # non differentiable
      nil
    when :transpose
      return [ts.transpose(grad, ts.invert_permutation(y)), nil]
    when :index
      # hack!! not sure how to fix this yet
      return grad if i[softmax_cross_entropy_with_logits_v2 sparse_softmax_cross_entropy_with_logits].include?(node.inputs[0].operation)

      if node.inputs[0].shape.known? && node.inputs[1].const_value
        multiplier = node.inputs[0].shape.shape[0]
        filler = ts.zeros_like(grad)

        res = Array.new(multiplier) { |index|
          index == node.inputs[1].const_value ? grad : filler
        }
        [res]
      end
    when :squeeze
      _reshape_to_input(node, grad)
    when :concat
      _concat_grad_helper(node, grad, 1, node.inputs.size, 0)
    when :stack
      res = ts.unstack(grad, num: node.inputs.size, axis: node.options[:axis])
      Array.new(node.inputs.size) { |i| res[i] }
    when :unstack
      ts.stack(grad, axis: node.options[:axis])
    when :conv2d
      _Conv2DGrad(node, grad)
    else
      TensorStream::OpMaker.gradient_op(self, node, grad)
    end
  end
end

._concat_grad_helper(op, grad, start_value_index, end_value_index, dim_index) ⇒ Object



253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# File 'lib/tensor_stream/math_gradients.rb', line 253

def self._concat_grad_helper(op, grad, start_value_index, end_value_index, dim_index)
  # Degenerate concatenation, just return grad.
  if op.inputs.size == 2
    return end_value_index <= dim_index ? [grad] + [nil] : [nil] + [grad]
  end
  concat_dim = op.inputs[dim_index]
  input_values = op.inputs[start_value_index..end_value_index]
  non_neg_concat_dim = concat_dim % ts.rank(input_values[0])
  sizes = _extract_input_shapes(input_values)

  slicer = ts.slice(ts.stack(sizes, axis: 1), [non_neg_concat_dim, 0], [1, -1])
  sizes = ts.squeeze(slicer)

  out_grads = ts.split(grad, sizes, axis: non_neg_concat_dim, num: op.inputs.size - 1)
  end_value_index <= dim_index ? out_grads + [nil] : [nil] + out_grads
end

._Conv2DGrad(op, grad) ⇒ Object



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# File 'lib/tensor_stream/math_gradients.rb', line 270

def self._Conv2DGrad(op, grad)
  # dilations = op.get_attr("dilations")
  strides = op.options[:strides]
  padding = op.options[:padding]
  use_cudnn_on_gpu = op.options[:use_cudnn_on_gpu]
  data_format = op.options[:data_format]

  shape_0, shape_1 = ts.shape_n([op.inputs[0], op.inputs[1]])
  [
    _op(:conv2d_backprop_input,
      shape_0,
      op.inputs[1],
      grad,
      strides: strides,
        padding: padding,
        use_cudnn_on_gpu: use_cudnn_on_gpu,
        data_format: data_format),
    _op(:conv2d_backprop_filter,
      op.inputs[0],
      shape_1,
      grad,
      strides: strides,
      padding: padding,
      use_cudnn_on_gpu: use_cudnn_on_gpu,
      data_format: data_format),
  ]
end

._extract_input_shapes(inputs) ⇒ Object



234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# File 'lib/tensor_stream/math_gradients.rb', line 234

def self._extract_input_shapes(inputs)
  sizes = []
  fully_known = true
  inputs.each do |x|
    input_shape = ts.shape(x)
    unless input_shape.is_const
      fully_known = false
      break
    end
    sizes << input_shape.value
  end

  if fully_known
    sizes
  else
    ts.shape_n(inputs)
  end
end

._include?(arr, obj) ⇒ Boolean

Returns:

  • (Boolean)


229
230
231
232
# File 'lib/tensor_stream/math_gradients.rb', line 229

def self._include?(arr, obj)
  arr.each { |a| return true if a.equal?(obj) }
  false
end

._min_or_max_grad(inputs, grad, selector_op) ⇒ Object



207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# File 'lib/tensor_stream/math_gradients.rb', line 207

def self._min_or_max_grad(inputs, grad, selector_op)
  x = inputs[0]
  y = inputs[1]
  gdtype = grad.data_type
  sx = ts.shape(x)
  sy = ts.shape(y)
  gradshape = ts.shape(grad)
  zeros = ts.zeros(gradshape, dtype: gdtype)
  xmask = selector_op.call(x, y)
  rx, ry = _broadcast_gradient_args(sx, sy)
  xgrad = ts.where(xmask, grad, zeros, name: "x")
  ygrad = ts.where(xmask, zeros, grad, name: "y")
  gx = ts.reshape(ts.reduce_sum(xgrad, rx), sx)
  gy = ts.reshape(ts.reduce_sum(ygrad, ry), sy)
  [gx, gy]
end

._op_supports_broadcast?(node) ⇒ Boolean

Returns:

  • (Boolean)


202
203
204
205
# File 'lib/tensor_stream/math_gradients.rb', line 202

def self._op_supports_broadcast?(node)
  return true if i[add sub div mul pow].include?(node.operation)
  false
end

._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) ⇒ Object



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# File 'lib/tensor_stream/math_gradients.rb', line 25

def self._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = [])
  return grad if stop_tensor.equal?(tensor)
  return nil if stop_gradients && _include?(stop_gradients, tensor)
  return nil unless tensor.is_a?(Operation)

  computed_op = _compute_derivative(tensor, grad)

  if computed_op.is_a?(Array)
    grads = computed_op.each_with_index.collect { |op_grad, index|
      next if op_grad.nil?
      next unless nodes_to_compute.include?(tensor.inputs[index].name)

      _propagate(op_grad, tensor.inputs[index], stop_tensor, nodes_to_compute, stop_gradients)
    }.compact

    return nil if grads.empty?
    grads.size > 1 ? ts.add_n(grads) : grads[0]
  else

    if computed_op.nil?
      return nil
    end
    _propagate(computed_op, tensor.inputs[0], stop_tensor, nodes_to_compute, stop_gradients)
  end
end

._reshape_to_input(node, grad) ⇒ Object



174
175
176
# File 'lib/tensor_stream/math_gradients.rb', line 174

def self._reshape_to_input(node, grad)
  ts.reshape(grad, ts.shape(node.inputs[0]))
end

._safe_shape_div(arg_x, arg_y) ⇒ Object



187
188
189
# File 'lib/tensor_stream/math_gradients.rb', line 187

def self._safe_shape_div(arg_x, arg_y)
  _op(:floor_div, arg_x, ts.maximum(arg_y, 1))
end

._sum_grad(arg_x, arg_y, grad) ⇒ Object



191
192
193
194
195
196
197
198
199
200
# File 'lib/tensor_stream/math_gradients.rb', line 191

def self._sum_grad(arg_x, arg_y, grad)
  input_shape = _op(:shape, arg_x)
  output_shape_kept_dims = ts.reduced_shape(input_shape, arg_y)
  tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
  new_grad = _op(:reshape, grad, output_shape_kept_dims)

  grad = _op(:case, [_op(:rank, grad).zero?], _op(:tile, new_grad, tile_scaling), _op(:fill, input_shape, grad))

  [grad, nil]
end

.derivative(tensor, wrt_dx, options = {}) ⇒ Object



11
12
13
14
15
16
17
18
19
20
21
22
23
# File 'lib/tensor_stream/math_gradients.rb', line 11

def self.derivative(tensor, wrt_dx, options = {})
  return i_op(:ones_like, tensor) if tensor.equal?(wrt_dx)
  return i_op(:zeros_like, wrt_dx) unless wrt_dx.consumers.include?(tensor.name)

  nodes_to_compute = wrt_dx.consumers.select { |t|
    node = tensor.graph.nodes[t]
    node.consumers.include?(tensor.name) || node.equal?(tensor)
  }.compact + [wrt_dx.name]

  grad = i_op(:fill, ts.shape(tensor), ts.constant(1, dtype: wrt_dx.data_type))

  _propagate(grad, tensor, wrt_dx, nodes_to_compute, options[:stop_gradients] || []) || i_op(:zeros_like, wrt_dx)
end

.tsObject



7
8
9
# File 'lib/tensor_stream/math_gradients.rb', line 7

def self.ts
  TensorStream
end