Class: TensorStream::MathGradients
- Inherits:
-
Object
- Object
- TensorStream::MathGradients
- Extended by:
- OpHelper
- Defined in:
- lib/tensor_stream/math_gradients.rb
Overview
Class that provides auto-differentiation Most gradients are ported over from tensorflow’s math_grad.py
Class Method Summary collapse
- ._broadcast_gradient_args(input_a, input_b) ⇒ Object
- ._broadcast_mul(vec, mat) ⇒ Object
- ._broadcast_transform(input_a, input_b) ⇒ Object
-
._compute_derivative(node, grad) ⇒ Object
TODO: refactor and implement registerGradient.
- ._concat_grad_helper(op, grad, start_value_index, end_value_index, dim_index) ⇒ Object
- ._Conv2DGrad(op, grad) ⇒ Object
- ._extract_input_shapes(inputs) ⇒ Object
- ._include?(arr, obj) ⇒ Boolean
- ._min_or_max_grad(inputs, grad, selector_op) ⇒ Object
- ._op_supports_broadcast?(node) ⇒ Boolean
- ._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) ⇒ Object
- ._reshape_to_input(node, grad) ⇒ Object
- ._safe_shape_div(arg_x, arg_y) ⇒ Object
- ._sum_grad(arg_x, arg_y, grad) ⇒ Object
- .derivative(tensor, wrt_dx, options = {}) ⇒ Object
- .ts ⇒ Object
Methods included from OpHelper
_op, cons, format_source, fp_type?, i_cons, i_op, i_var, int_type?, reduced_shape, shape_eval, shape_full_specified, shapes_fully_specified_and_equal
Class Method Details
._broadcast_gradient_args(input_a, input_b) ⇒ Object
178 179 180 181 |
# File 'lib/tensor_stream/math_gradients.rb', line 178 def self._broadcast_gradient_args(input_a, input_b) res = _op(:broadcast_gradient_args, input_a, input_b) [res[0], res[1]] end |
._broadcast_mul(vec, mat) ⇒ Object
224 225 226 227 |
# File 'lib/tensor_stream/math_gradients.rb', line 224 def self._broadcast_mul(vec, mat) vec = ts.(vec, -1) vec * mat end |
._broadcast_transform(input_a, input_b) ⇒ Object
183 184 185 |
# File 'lib/tensor_stream/math_gradients.rb', line 183 def self._broadcast_transform(input_a, input_b) _op(:broadcast_transform, input_a, input_b) end |
._compute_derivative(node, grad) ⇒ Object
TODO: refactor and implement registerGradient
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# File 'lib/tensor_stream/math_gradients.rb', line 52 def self._compute_derivative(node, grad) node.graph.name_scope("#{node.name}_grad") do x = node.inputs[0] if node.inputs[0] y = node.inputs[1] if node.inputs[1] z = node.inputs[2] if node.inputs[2] case node.operation when :add_n return [grad] * node.inputs.size when :asin ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) den = ts.sqrt(ts.subtract(one, x2)) inv = ts.reciprocal(den) grad * inv end when :acos ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) den = ts.sqrt(ts.subtract(one, x2)) inv = ts.reciprocal(den) -grad * inv end when :atan ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) inv = ts.reciprocal(ts.add(one, x2)) grad * inv end when :squared_difference sx = i_op(:shape, x) sy = i_op(:shape, y) rx, ry = _broadcast_gradient_args(sx, sy) x_grad = ts.mul(2.0, grad) * (x - y) [ts.reshape(ts.reduce_sum(x_grad, rx), sx), ts.reshape(-ts.reduce_sum(x_grad, ry), sy),] when :abs grad * ts.sign(x) when :exp grad * node when :identity, :print grad when :tile input_shape = ts.shape(x) split_shape = ts.reshape(ts.transpose(ts.stack([y, input_shape])), [-1]) axes = ts.range(0, ts.size(split_shape), 2) input_grad = ts.reduce_sum(ts.reshape(grad, split_shape), axes) [input_grad, nil] when :reciprocal -grad * (ts.constant(1, dtype: x.dtype) / x**2) when :sqrt ts.constant(1, dtype: x.dtype) / (ts.constant(2, dtype: x.dtype) * ts.sqrt(x)) * grad when :stop_gradient ts.zeros_like(grad) when :square y = ts.constant(2.0, dtype: x.dtype) ts.multiply(grad, ts.multiply(x, y)) when :where x_mask = i_op(:where, x, i_op(:ones_like, y), i_op(:zeros_like, z)) y_mask = i_op(:where, x, i_op(:zeros_like, y), i_op(:ones_like, z)) [nil, x_mask * grad, y_mask * grad] when :mean sum_grad = _sum_grad(x, y, grad)[0] input_shape = ts.shape(x) output_shape = ts.shape(node) factor = _safe_shape_div(ts.reduce_prod(input_shape), ts.reduce_prod(output_shape)) [ts.div(sum_grad, ts.cast(factor, sum_grad.data_type)), nil] when :log1p grad * ts.reciprocal(i_cons(1, dtype: grad.data_type) + x) when :sigmoid_grad gb = grad * y [gb - 2.0 * gb * x, i_op(:sigmoid_grad, x, grad)] when :softmax i_op(:softmax_grad, x, grad) when :softmax_cross_entropy_with_logits_v2 output = node logits = node.inputs[0] [_broadcast_mul(grad, output[1]), -ts.nn.log_softmax(logits)] when :sparse_softmax_cross_entropy_with_logits output = node [_broadcast_mul(grad, output[1]), nil] when :zeros_like # non differentiable nil when :transpose return [ts.transpose(grad, ts.invert_permutation(y)), nil] when :index # hack!! not sure how to fix this yet return grad if i[softmax_cross_entropy_with_logits_v2 sparse_softmax_cross_entropy_with_logits].include?(node.inputs[0].operation) if node.inputs[0].shape.known? && node.inputs[1].const_value multiplier = node.inputs[0].shape.shape[0] filler = ts.zeros_like(grad) res = Array.new(multiplier) { |index| index == node.inputs[1].const_value ? grad : filler } [res] end when :squeeze _reshape_to_input(node, grad) when :concat _concat_grad_helper(node, grad, 1, node.inputs.size, 0) when :stack res = ts.unstack(grad, num: node.inputs.size, axis: node.[:axis]) Array.new(node.inputs.size) { |i| res[i] } when :unstack ts.stack(grad, axis: node.[:axis]) when :conv2d _Conv2DGrad(node, grad) else TensorStream::OpMaker.gradient_op(self, node, grad) end end end |
._concat_grad_helper(op, grad, start_value_index, end_value_index, dim_index) ⇒ Object
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# File 'lib/tensor_stream/math_gradients.rb', line 253 def self._concat_grad_helper(op, grad, start_value_index, end_value_index, dim_index) # Degenerate concatenation, just return grad. if op.inputs.size == 2 return end_value_index <= dim_index ? [grad] + [nil] : [nil] + [grad] end concat_dim = op.inputs[dim_index] input_values = op.inputs[start_value_index..end_value_index] non_neg_concat_dim = concat_dim % ts.rank(input_values[0]) sizes = _extract_input_shapes(input_values) slicer = ts.slice(ts.stack(sizes, axis: 1), [non_neg_concat_dim, 0], [1, -1]) sizes = ts.squeeze(slicer) out_grads = ts.split(grad, sizes, axis: non_neg_concat_dim, num: op.inputs.size - 1) end_value_index <= dim_index ? out_grads + [nil] : [nil] + out_grads end |
._Conv2DGrad(op, grad) ⇒ Object
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# File 'lib/tensor_stream/math_gradients.rb', line 270 def self._Conv2DGrad(op, grad) # dilations = op.get_attr("dilations") strides = op.[:strides] padding = op.[:padding] use_cudnn_on_gpu = op.[:use_cudnn_on_gpu] data_format = op.[:data_format] shape_0, shape_1 = ts.shape_n([op.inputs[0], op.inputs[1]]) [ _op(:conv2d_backprop_input, shape_0, op.inputs[1], grad, strides: strides, padding: padding, use_cudnn_on_gpu: use_cudnn_on_gpu, data_format: data_format), _op(:conv2d_backprop_filter, op.inputs[0], shape_1, grad, strides: strides, padding: padding, use_cudnn_on_gpu: use_cudnn_on_gpu, data_format: data_format), ] end |
._extract_input_shapes(inputs) ⇒ Object
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# File 'lib/tensor_stream/math_gradients.rb', line 234 def self._extract_input_shapes(inputs) sizes = [] fully_known = true inputs.each do |x| input_shape = ts.shape(x) unless input_shape.is_const fully_known = false break end sizes << input_shape.value end if fully_known sizes else ts.shape_n(inputs) end end |
._include?(arr, obj) ⇒ Boolean
229 230 231 232 |
# File 'lib/tensor_stream/math_gradients.rb', line 229 def self._include?(arr, obj) arr.each { |a| return true if a.equal?(obj) } false end |
._min_or_max_grad(inputs, grad, selector_op) ⇒ Object
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# File 'lib/tensor_stream/math_gradients.rb', line 207 def self._min_or_max_grad(inputs, grad, selector_op) x = inputs[0] y = inputs[1] gdtype = grad.data_type sx = ts.shape(x) sy = ts.shape(y) gradshape = ts.shape(grad) zeros = ts.zeros(gradshape, dtype: gdtype) xmask = selector_op.call(x, y) rx, ry = _broadcast_gradient_args(sx, sy) xgrad = ts.where(xmask, grad, zeros, name: "x") ygrad = ts.where(xmask, zeros, grad, name: "y") gx = ts.reshape(ts.reduce_sum(xgrad, rx), sx) gy = ts.reshape(ts.reduce_sum(ygrad, ry), sy) [gx, gy] end |
._op_supports_broadcast?(node) ⇒ Boolean
202 203 204 205 |
# File 'lib/tensor_stream/math_gradients.rb', line 202 def self._op_supports_broadcast?(node) return true if i[add sub div mul pow].include?(node.operation) false end |
._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) ⇒ Object
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# File 'lib/tensor_stream/math_gradients.rb', line 25 def self._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) return grad if stop_tensor.equal?(tensor) return nil if stop_gradients && _include?(stop_gradients, tensor) return nil unless tensor.is_a?(Operation) computed_op = _compute_derivative(tensor, grad) if computed_op.is_a?(Array) grads = computed_op.each_with_index.collect { |op_grad, index| next if op_grad.nil? next unless nodes_to_compute.include?(tensor.inputs[index].name) _propagate(op_grad, tensor.inputs[index], stop_tensor, nodes_to_compute, stop_gradients) }.compact return nil if grads.empty? grads.size > 1 ? ts.add_n(grads) : grads[0] else if computed_op.nil? return nil end _propagate(computed_op, tensor.inputs[0], stop_tensor, nodes_to_compute, stop_gradients) end end |
._reshape_to_input(node, grad) ⇒ Object
174 175 176 |
# File 'lib/tensor_stream/math_gradients.rb', line 174 def self._reshape_to_input(node, grad) ts.reshape(grad, ts.shape(node.inputs[0])) end |
._safe_shape_div(arg_x, arg_y) ⇒ Object
187 188 189 |
# File 'lib/tensor_stream/math_gradients.rb', line 187 def self._safe_shape_div(arg_x, arg_y) _op(:floor_div, arg_x, ts.maximum(arg_y, 1)) end |
._sum_grad(arg_x, arg_y, grad) ⇒ Object
191 192 193 194 195 196 197 198 199 200 |
# File 'lib/tensor_stream/math_gradients.rb', line 191 def self._sum_grad(arg_x, arg_y, grad) input_shape = _op(:shape, arg_x) output_shape_kept_dims = ts.reduced_shape(input_shape, arg_y) tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims) new_grad = _op(:reshape, grad, output_shape_kept_dims) grad = _op(:case, [_op(:rank, grad).zero?], _op(:tile, new_grad, tile_scaling), _op(:fill, input_shape, grad)) [grad, nil] end |
.derivative(tensor, wrt_dx, options = {}) ⇒ Object
11 12 13 14 15 16 17 18 19 20 21 22 23 |
# File 'lib/tensor_stream/math_gradients.rb', line 11 def self.derivative(tensor, wrt_dx, = {}) return i_op(:ones_like, tensor) if tensor.equal?(wrt_dx) return i_op(:zeros_like, wrt_dx) unless wrt_dx.consumers.include?(tensor.name) nodes_to_compute = wrt_dx.consumers.select { |t| node = tensor.graph.nodes[t] node.consumers.include?(tensor.name) || node.equal?(tensor) }.compact + [wrt_dx.name] grad = i_op(:fill, ts.shape(tensor), ts.constant(1, dtype: wrt_dx.data_type)) _propagate(grad, tensor, wrt_dx, nodes_to_compute, [:stop_gradients] || []) || i_op(:zeros_like, wrt_dx) end |
.ts ⇒ Object
7 8 9 |
# File 'lib/tensor_stream/math_gradients.rb', line 7 def self.ts TensorStream end |