Module: TensorStream::ArrayOpsHelper

Included in:
Evaluator::OpenclEvaluator, Evaluator::RubyEvaluator, OpenCLBuffer
Defined in:
lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb

Overview

varoius utility functions for array processing

Instance Method Summary collapse

Instance Method Details

#broadcast(input_a, input_b) ⇒ Object



37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 37

def broadcast(input_a, input_b)
  sa = shape_eval(input_a)
  sb = shape_eval(input_b)

  return [input_a, input_b] if sa == sb

  # descalar
  if sa.empty?
    input_a = [input_a]
    sa = [1]
  end

  if sb.empty?
    input_b = [input_b]
    sb = [1]
  end

  target_shape = shape_diff(sa, sb)

  if target_shape
    input_b = broadcast_dimensions(input_b, target_shape)
  else
    target_shape = shape_diff(sb, sa)
    raise "Incompatible shapes for op #{shape_eval(input_a)} vs #{shape_eval(input_b)}" if target_shape.nil?

    input_a = broadcast_dimensions(input_a, target_shape)
  end

  [input_a, input_b]
end

#broadcast_dimensions(input, dims = []) ⇒ Object

explicit broadcasting helper



69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 69

def broadcast_dimensions(input, dims = [])
  return input if dims.empty?

  d = dims.shift

  if input.is_a?(Array) && (get_rank(input) - 1) == dims.size
    row_to_dup = input.collect do |input|
      broadcast_dimensions(input, dims.dup)
    end

    row_to_dup + Array.new(d) { row_to_dup }.flatten(1)
  elsif input.is_a?(Array)
    Array.new(d) { broadcast_dimensions(input, dims.dup) }
  else
    Array.new(d + 1) { input }
  end
end

#get_rank(value, rank = 0) ⇒ Object



162
163
164
165
166
167
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 162

def get_rank(value, rank = 0)
  return rank unless value.is_a?(Array)
  return rank + 1 if value.empty?

  get_rank(value[0], rank + 1)
end

#process_function_op(a, op) ⇒ Object



153
154
155
156
157
158
159
160
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 153

def process_function_op(a, op)
  # ruby scalar
  if (a.is_a?(Tensor) && a.shape.rank > 0) || a.is_a?(Array)
    vector_op(a, 0, op)
  else
    op.call(a, 0)
  end
end

#reduced_shape(input_shape, axes) ⇒ Object



26
27
28
29
30
31
32
33
34
35
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 26

def reduced_shape(input_shape, axes)
  return [] if axes.nil? # reduce to scalar
  axes = [ axes ] unless axes.is_a?(Array)
  return input_shape if axes.empty?

  axes.each do |dimen|
    input_shape[dimen] = 1
  end
  input_shape
end

#shape_diff(shape_a, shape_b) ⇒ Object



124
125
126
127
128
129
130
131
132
133
134
135
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 124

def shape_diff(shape_a, shape_b)
  return nil if shape_b.size > shape_a.size

  reversed_a = shape_a.reverse
  reversed_b = shape_b.reverse

  reversed_a.each_with_index.collect do |s, index|
    next s if index >= reversed_b.size
    return nil if reversed_b[index] > s
    s - reversed_b[index]
  end.reverse
end

#slice_tensor(input, start, size) ⇒ Object



4
5
6
7
8
9
10
11
12
13
14
15
16
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 4

def slice_tensor(input, start, size)
  return input if size.empty?
  start_index = start.shift
  dimen_size = start_index + size.shift

  input[start_index...dimen_size].collect do |input|
    if input.is_a?(Array)
      slice_tensor(input, start.dup, size.dup)
    else
      input
    end
  end
end

#softmax(arr) ⇒ Object



169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 169

def softmax(arr)
  return arr if arr.empty?

  sum = if !arr[0].is_a?(Array)
    arr.map { |a| Math.exp(a - arr.max) }.reduce(:+)
  end

  arr.collect do |input|
    if input.is_a?(Array)
      softmax(input)
    else
      Math.exp(input - arr.max) / sum
    end
  end
end

#softmax_grad(arr) ⇒ Object



185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 185

def softmax_grad(arr)
  return arr if arr.empty?

  arr.each_with_index.collect do |input, index|
    if input.is_a?(Array)
      softmax_grad(input)
    else
      arr.each_with_index.collect do |input2, index2|
        if index != index2
          -input * input2
        else
          input * (1.0 - input)
        end
      end
    end
  end
end

#tile_arr(input, dimen, multiples) ⇒ Object



137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 137

def tile_arr(input, dimen, multiples)
  t = multiples[dimen]
  if dimen == multiples.size - 1
    return nil if t.zero?
    input * t # ruby array dup
  else
    new_arr = input.collect do |sub|
      tile_arr(sub, dimen + 1, multiples)
    end.compact

    return nil if new_arr.empty?

    new_arr * t
  end
end

#truncate(input, target_shape) ⇒ Object



18
19
20
21
22
23
24
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 18

def truncate(input, target_shape)
  rank = get_rank(input)
  return input if rank.zero?

  start = Array.new(rank) { 0 }
  slice_tensor(input, start, target_shape)
end

#vector_op(vector, vector2, op = ->(a, b) { a + b }, switch = false, safe = true) ⇒ Object

handle 2 tensor math operations



88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 88

def vector_op(vector, vector2, op = ->(a, b) { a + b }, switch = false, safe = true)
  if get_rank(vector) < get_rank(vector2) # upgrade rank of A
    duplicated = Array.new(vector2.size) do
      vector
    end
    return vector_op(duplicated, vector2, op, switch)
  end

  return op.call(vector, vector2) unless vector.is_a?(Array)

  vector.each_with_index.collect do |input, index|
    next vector_op(input, vector2, op, switch) if input.is_a?(Array) && get_rank(vector) > get_rank(vector2)

    if safe && vector2.is_a?(Array)
      next nil if vector2.size != 1 && index >= vector2.size
    end

    z = if vector2.is_a?(Array)
          if index < vector2.size
            vector2[index]
          else
            raise 'incompatible tensor shapes used during op' if vector2.size != 1
            vector2[0]
          end
        else
          vector2
        end

    if input.is_a?(Array)
      vector_op(input, z, op, switch)
    else
      switch ? op.call(z, input) : op.call(input, z)
    end
  end.compact
end