Class: TensorStream::MathGradients
- Inherits:
-
Object
- Object
- TensorStream::MathGradients
- Extended by:
- OpHelper
- Defined in:
- lib/tensor_stream/math_gradients.rb
Overview
Class that provides auto-differentiation
Class Method Summary collapse
- ._broadcast_gradient_args(input_a, input_b) ⇒ Object
- ._broadcast_transform(input_a, input_b) ⇒ Object
- ._compute_derivative(node, grad) ⇒ Object
- ._include?(arr, obj) ⇒ Boolean
- ._min_or_max_grad(op, grad) ⇒ Object
- ._op_supports_broadcast?(node) ⇒ Boolean
- ._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) ⇒ Object
- ._safe_shape_div(x, y) ⇒ Object
- ._shape_full_specified(tensor) ⇒ Object
- ._shapes_fully_specified_and_equal(x, y) ⇒ Object
- ._sum_grad(x, y, grad) ⇒ Object
- .derivative(tensor, wrt_dx, options = {}) ⇒ Object
- .tf ⇒ Object
Methods included from OpHelper
_op, cons, dtype_eval, format_source, fp_type?, i_cons, i_op, shape_eval, val_to_dtype
Class Method Details
._broadcast_gradient_args(input_a, input_b) ⇒ Object
200 201 202 |
# File 'lib/tensor_stream/math_gradients.rb', line 200 def self._broadcast_gradient_args(input_a, input_b) [_op(:broadcast_gradient_args, input_b, input_a), _op(:broadcast_gradient_args, input_a, input_b)] end |
._broadcast_transform(input_a, input_b) ⇒ Object
204 205 206 |
# File 'lib/tensor_stream/math_gradients.rb', line 204 def self._broadcast_transform(input_a, input_b) _op(:broadcast_transform, input_a, input_b) end |
._compute_derivative(node, grad) ⇒ Object
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'lib/tensor_stream/math_gradients.rb', line 53 def self._compute_derivative(node, grad) node.graph.name_scope("#{node.name}_grad") do x = node.items[0] if node.items[0] y = node.items[1] if node.items[1] case node.operation when :add return [grad, grad] if _shapes_fully_specified_and_equal(x, y) sx = tf.shape(x, name: 'add/shape_x') sy = tf.shape(y, name: 'add/shape_y') rx, ry = _broadcast_gradient_args(sx, sy) keep_dims_x = tf.rank(x) == tf.rank(grad) keep_dims_y = tf.rank(y) == tf.rank(grad) [tf.reduce_sum(grad, rx, name: 'add/reduce_sum_x', keepdims: keep_dims_x), tf.reduce_sum(grad, ry, name: 'add/reduce_sum_y', keepdims: keep_dims_y)] when :sub return [grad, -grad] if _shapes_fully_specified_and_equal(x, y) sx = tf.shape(x, name: 'sub/shape_x') sy = tf.shape(y, name: 'sub/shape_y') rx, ry = _broadcast_gradient_args(sx, sy) [tf.reduce_sum(grad, rx), -tf.reduce_sum(grad, ry)] when :mul sx = tf.shape(x) sy = tf.shape(y) rx, ry = _broadcast_gradient_args(sx, sy) [ tf.reduce_sum(tf.mul(grad, y), rx), tf.reduce_sum(tf.mul(x, grad), ry)] when :div sx = i_op(:shape, x) sy = i_op(:shape, y) rx, ry = _broadcast_gradient_args(sx, sy) [tf.reduce_sum(tf.div(grad, y), rx), tf.reduce_sum(grad * tf.div(tf.div(-x, y), y), ry)] when :matmul t_a = node.[:transpose_a] t_b = node.[:transpose_b] s0 = tf.shape(x) s1 = tf.shape(y) identity_0 = tf.ones([ s0[0], s1[1] ], dtype: x.data_type, name: 'matmul/identity0') identity_1 = tf.ones([ s0[0], s1[1] ], dtype: y.data_type, name: 'matmul/identity1') grad_a, grad_b = nil if !t_a && !t_b grad_a = tf.matmul(identity_0, y, transpose_b: true) grad_b = tf.matmul(x, identity_1, transpose_a: true) elsif !ta && tb grad_a = tf.matmul(identity_0, y) grad_b = tf.matmul(identity_1, x, transpose_a: true) elsif t_a && !t_b grad_a = tf.matmul(y, identity_0, transpose_b: true) grad_b = tf.matmul(x, identity_1) elsif t_a && t_b grad_a = tf.matmul(y, identity_0, transpose_a: true, transpose_b: true) grad_b = tf.matmul(identity_1, x, transpose_a: true, transpose_b: true) end grad_a = i_op(:mul, grad, grad_a, name: 'matmul/grad_a_norm_mul_da') grad_b = i_op(:mul, grad, grad_b, name: 'matmul/grad_b_norm_mul_db') [grad_a, grad_b] when :sin grad * tf.cos(x) when :tanh grad * i_op(:tanh_grad, x) when :pow z = node sx = tf.shape(x) sy = tf.shape(y) rx, ry = _broadcast_gradient_args(sx, sy) gx = tf.reshape( tf.reduce_sum(grad * y * tf.pow(x, y - 1), rx), sx) log_x = tf.where(x > 0, tf.log(x), tf.zeros_like(x)) gy = tf.reshape(tf.reduce_sum(grad * z * log_x, ry), sy) [gx, gy] when :abs grad * tf.sign(x) when :log grad * tf.reciprocal(x) when :tanh i_op(:tanh_grad, x) * grad when :cos -grad * tf.sin(x) when :max x_mask = tf.where(x > y, tf.ones_like(x), tf.zeros_like(y)) y_mask = tf.where(x < y, tf.zeros_like(x), tf.ones_like(y)) [x_mask * grad, y_mask * grad] when :tan secx = tf.reciprocal(tf.cos(x)) secx2 = tf.square(secx) grad * secx2 when :negate -grad when :exp grad * node when :identity grad when :sum _sum_grad(x, y, grad) when :reciprocal -grad * (tf.constant(1, dtype: x.dtype) / x**2) when :sqrt tf.constant(1, dtype: x.dtype) / (tf.constant(2, dtype: x.dtype) * tf.sqrt(x)) * grad when :stop_gradient tf.zeros_like(grad) when :square y = tf.constant(2.0, dtype: x.dtype) tf.multiply(grad, tf.multiply(x, y)) when :where x_mask = i_op(:where, i_op(:ones_like, x), i_op(:zeros_like, y), pred: node.[:pred]) y_mask = i_op(:where, i_op(:zeros_like, x), i_op(:ones_like, y), pred: node.[:pred]) [x_mask * grad, y_mask * grad] when :cond x_cond = i_op(:cond, i_op(:ones_like, x), i_op(:zeros_like, y), pred: node.[:pred]) y_cond = i_op(:cond, i_op(:zeros_like, x), i_op(:ones_like, x), pred: node.[:pred]) [x_cond * grad, y_cond * grad] when :mean sum_grad = _sum_grad(x, y, grad) input_shape = tf.shape(x) output_shape = tf.shape(node) factor = _safe_shape_div(tf.reduce_prod(input_shape), tf.reduce_prod(output_shape)) tf.div(sum_grad, tf.cast(factor, sum_grad.data_type)) when :log1p grad * tf.reciprocal(i_cons(1, data_type: grad.data_type) + x) when :sigmoid i_op(:sigmoid_grad, x, grad) when :zeros_like # non differentiable nil when :argmin, :argmax # non differentiable [nil, nil] else raise "no derivative op for #{node.operation}" end end end |
._include?(arr, obj) ⇒ Boolean
228 229 230 231 |
# File 'lib/tensor_stream/math_gradients.rb', line 228 def self._include?(arr, obj) arr.each { |a| return true if a.equal?(obj) } false end |
._min_or_max_grad(op, grad) ⇒ Object
221 222 223 224 225 226 |
# File 'lib/tensor_stream/math_gradients.rb', line 221 def self._min_or_max_grad(op, grad) y = op indicators = tf.cast(tf.equal(y, op.items[0]), grad.data_type) num_selected = tf.reduce_sum(indicators, op.items[1]) _safe_shape_div(indicators, num_selected) * grad end |
._op_supports_broadcast?(node) ⇒ Boolean
216 217 218 219 |
# File 'lib/tensor_stream/math_gradients.rb', line 216 def self._op_supports_broadcast?(node) return true if i[add sub div mul pow].include?(node.operation) false end |
._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) ⇒ Object
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# File 'lib/tensor_stream/math_gradients.rb', line 25 def self._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) return grad * i_op(:ones_like, stop_tensor) if stop_tensor.equal?(tensor) return i_op(:zeros_like, stop_tensor) if stop_gradients && _include?(stop_gradients, tensor) return i_op(:zeros_like, stop_tensor) unless tensor.is_a?(Operation) computed_op = if _op_supports_broadcast?(tensor) _compute_derivative(tensor, _broadcast_transform(tensor, grad)[1]) else _compute_derivative(tensor, grad) end if computed_op.is_a?(Array) partials = [] computed_op.each_with_index do |op_grad, index| next if op_grad.nil? if nodes_to_compute.include?(tensor.items[index].name) partials << _propagate(op_grad, tensor.items[index], stop_tensor, nodes_to_compute, stop_gradients) end end partials.reduce(:+) else return tf.zeros_like(stop_tensor) if computed_op.nil? _propagate(computed_op, tensor.items[0], stop_tensor, nodes_to_compute, stop_gradients) end end |
._safe_shape_div(x, y) ⇒ Object
208 209 210 |
# File 'lib/tensor_stream/math_gradients.rb', line 208 def self._safe_shape_div(x, y) x / tf.maximum(y, 1) end |
._shape_full_specified(tensor) ⇒ Object
240 241 242 243 244 245 246 |
# File 'lib/tensor_stream/math_gradients.rb', line 240 def self._shape_full_specified(tensor) return false if tensor.shape.nil? return false if tensor.shape.shape.nil? tensor.shape.shape.each { |s| return false if s.nil? } true end |
._shapes_fully_specified_and_equal(x, y) ⇒ Object
233 234 235 236 237 238 |
# File 'lib/tensor_stream/math_gradients.rb', line 233 def self._shapes_fully_specified_and_equal(x, y) return false if !_shape_full_specified(x) || !_shape_full_specified(y) return false if x.shape.shape != y.shape.shape true end |
._sum_grad(x, y, grad) ⇒ Object
212 213 214 |
# File 'lib/tensor_stream/math_gradients.rb', line 212 def self._sum_grad(x, y, grad) tf.ones_like(x) * grad end |
.derivative(tensor, wrt_dx, options = {}) ⇒ Object
10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
# File 'lib/tensor_stream/math_gradients.rb', line 10 def self.derivative(tensor, wrt_dx, = {}) return i_op(:ones_like, tensor) if tensor.equal?(wrt_dx) return i_op(:zeros_like, tensor) unless wrt_dx.consumers.include?(tensor.name) nodes_to_compute = wrt_dx.consumers.select do |t| node = tensor.graph.nodes[t] node.consumers.include?(tensor.name) || node.equal?(tensor) end.compact + [wrt_dx.name] grad = i_op(:ones_like, wrt_dx) result = _propagate(grad, tensor, wrt_dx, nodes_to_compute, [:stop_gradients] || []) i_op(:truncate, result, tf.shape(wrt_dx)) end |
.tf ⇒ Object
6 7 8 |
# File 'lib/tensor_stream/math_gradients.rb', line 6 def self.tf TensorStream end |