Module: TensorStream::Ops
- Included in:
- TensorStream
- Defined in:
- lib/tensor_stream/ops.rb
Overview
Class that defines all available ops supported by TensorStream
Constant Summary collapse
- FLOATING_POINT_TYPES =
%w[float32 float64].map(&:to_sym)
- NUMERIC_TYPES =
%w[int32 int64 float32 float64].map(&:to_sym)
Instance Method Summary collapse
- #abs(input, name: nil) ⇒ Object
- #add(input_a, input_b, name: nil) ⇒ Object
- #argmax(input, axis = nil, name: nil, dimension: nil, output_type: :int32) ⇒ Object
- #cast(input, dtype, name: nil) ⇒ Object
- #concat(values, axis, name: 'concat') ⇒ Object
- #cond(pred, true_fn, false_fn, name: nil) ⇒ Object
- #cos(input, options = {}) ⇒ Object
- #equal(input_a, input_b, name: nil) ⇒ Object
- #exp(input, options = {}) ⇒ Object
- #eye(num_rows, num_columns: nil, dtype: :float32, name: nil) ⇒ Object
- #glorot_uniform_initializer(seed: nil, dtype: :float32) ⇒ Object
- #gradients(input, wrt_xs, grad_ys: nil, name: 'gradients', colocate_gradients_with_ops: false, gate_gradients: false, aggregation_method: nil, stop_gradients: nil) ⇒ Object
- #greater(input_a, input_b, name: nil) ⇒ Object
- #greater_equal(input_a, input_b, name: nil) ⇒ Object
- #identity(input, name: nil) ⇒ Object
- #less(input_a, input_b, name: nil) ⇒ Object
- #less_equal(input_a, input_b, name: nil) ⇒ Object
- #log(input, options = {}) ⇒ Object
- #log1p(input, options = {}) ⇒ Object
- #logical_and(input_a, input_b, name: nil) ⇒ Object
- #matmul(input_a, input_b, transpose_a: false, transpose_b: false, name: nil) ⇒ Object
- #max(input_a, input_b, name: nil) ⇒ Object
- #maximum(input_a, input_b, name: nil) ⇒ Object
- #multiply(input_a, input_b, name: nil) ⇒ Object
- #negate(input, options = {}) ⇒ Object
- #not_equal(input_a, input_b, name: nil) ⇒ Object
- #ones(shape, dtype: :float32, name: nil) ⇒ Object
- #ones_like(tensor, dtype: nil, name: nil) ⇒ Object
- #pad(tensor, paddings, mode: 'CONSTANT', name: nil) ⇒ Object
- #pow(input_a, input_e, name: nil) ⇒ Object
- #print(input, data, message: nil, name: nil) ⇒ Object
- #random_normal(shape, dtype: :float32, mean: 0.0, stddev: 1.0, seed: nil, name: nil) ⇒ Object
- #random_uniform(shape, dtype: :float32, minval: 0, maxval: 1, seed: nil, name: nil) ⇒ Object
- #random_uniform_initializer(minval: 0, maxval: 1, seed: nil, dtype: nil) ⇒ Object
- #rank(input, name: nil) ⇒ Object
- #reciprocal(tensor, name: nil) ⇒ Object
- #reduce_mean(input_tensor, axis = nil, keepdims: false, name: nil) ⇒ Object
- #reduce_prod(input, axis = nil, keepdims: false, name: nil) ⇒ Object
- #reduce_sum(input_tensor, axis = nil, keepdims: false, name: nil) ⇒ Object
- #reshape(tensor, shape, name: nil) ⇒ Object
- #round(tensor, name: nil) ⇒ Object
- #shape(input, name: nil, out_type: :int32) ⇒ Object
- #sigmoid(input, name: nil) ⇒ Object
- #sign(input, name: nil) ⇒ Object
- #sin(input, options = {}) ⇒ Object
- #slice(input, start, size, name: nil) ⇒ Object
- #sqrt(input, name: nil) ⇒ Object
- #square(tensor, name: nil) ⇒ Object
- #stop_gradient(tensor, options = {}) ⇒ Object
- #sub(input_a, input_b, name: nil) ⇒ Object
- #tan(input, options = {}) ⇒ Object
- #tanh(input, options = {}) ⇒ Object
- #transpose(tensor, perm: nil, name: 'transpose') ⇒ Object
- #where(condition, true_t = nil, false_t = nil, name: nil) ⇒ Object
- #zeros(shape, dtype: :float32, name: nil) ⇒ Object
- #zeros_initializer(options = {}) ⇒ Object
- #zeros_like(tensor, dtype: nil, name: nil) ⇒ Object
Instance Method Details
#abs(input, name: nil) ⇒ Object
209 210 211 |
# File 'lib/tensor_stream/ops.rb', line 209 def abs(input, name: nil) _op(:abs, input, nil, name: name) end |
#add(input_a, input_b, name: nil) ⇒ Object
150 151 152 |
# File 'lib/tensor_stream/ops.rb', line 150 def add(input_a, input_b, name: nil) _op(:add, input_a, input_b, name: name) end |
#argmax(input, axis = nil, name: nil, dimension: nil, output_type: :int32) ⇒ Object
7 8 9 |
# File 'lib/tensor_stream/ops.rb', line 7 def argmax(input, axis = nil, name: nil, dimension: nil, output_type: :int32) _op(:argmax, input, nil, axis: axis, name: name, dimension: dimension, data_type: output_type) end |
#cast(input, dtype, name: nil) ⇒ Object
169 170 171 |
# File 'lib/tensor_stream/ops.rb', line 169 def cast(input, dtype, name: nil) _op(:cast, input, nil, data_type: dtype, name: name) end |
#concat(values, axis, name: 'concat') ⇒ Object
121 122 123 |
# File 'lib/tensor_stream/ops.rb', line 121 def concat(values, axis, name: 'concat') _op(:concat, values, nil, axis: axis, name: name) end |
#cond(pred, true_fn, false_fn, name: nil) ⇒ Object
142 143 144 |
# File 'lib/tensor_stream/ops.rb', line 142 def cond(pred, true_fn, false_fn, name: nil) _op(:cond, true_fn, false_fn, pred: pred, name: name) end |
#cos(input, options = {}) ⇒ Object
223 224 225 226 227 |
# File 'lib/tensor_stream/ops.rb', line 223 def cos(input, = {}) [:data_type] ||= :float32 check_allowed_types(input, FLOATING_POINT_TYPES) _op(:cos, input, nil, ) end |
#equal(input_a, input_b, name: nil) ⇒ Object
181 182 183 |
# File 'lib/tensor_stream/ops.rb', line 181 def equal(input_a, input_b, name: nil) _op(:equal, input_a, input_b, name: name) end |
#exp(input, options = {}) ⇒ Object
262 263 264 265 266 |
# File 'lib/tensor_stream/ops.rb', line 262 def exp(input, = {}) [:data_type] ||= :float32 check_allowed_types(input, FLOATING_POINT_TYPES) _op(:exp, input, nil, ) end |
#eye(num_rows, num_columns: nil, dtype: :float32, name: nil) ⇒ Object
53 54 55 |
# File 'lib/tensor_stream/ops.rb', line 53 def eye(num_rows, num_columns: nil, dtype: :float32, name: nil) _op(:eye, num_rows, num_columns || num_rows, data_type: dtype, name: name) end |
#glorot_uniform_initializer(seed: nil, dtype: :float32) ⇒ Object
69 70 71 |
# File 'lib/tensor_stream/ops.rb', line 69 def glorot_uniform_initializer(seed: nil, dtype: :float32) TensorStream::Initializer.new(-> { _op(:glorot_uniform, nil, nil, seed: seed, data_type: dtype) }) end |
#gradients(input, wrt_xs, grad_ys: nil, name: 'gradients', colocate_gradients_with_ops: false, gate_gradients: false, aggregation_method: nil, stop_gradients: nil) ⇒ Object
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
# File 'lib/tensor_stream/ops.rb', line 11 def gradients(input, wrt_xs, grad_ys: nil, name: 'gradients', colocate_gradients_with_ops: false, gate_gradients: false, aggregation_method: nil, stop_gradients: nil) gs = wrt_xs.collect do |x| raise "#{x} passed is not a tensor object" unless x.is_a?(Tensor) stops = stop_gradients ? stop_gradients.map(&:name).join('_') : '' gradient_program_name = "grad_#{input.name}_#{x.name}_#{stops}".to_sym tensor_program = if input.graph.node_added?(gradient_program_name) input.graph.get_node(gradient_program_name) else input.graph.name_scope("gradient_wrt_#{x.name}") do derivative_ops = TensorStream::MathGradients.derivative(input, x, graph: input.graph, stop_gradients: stop_gradients) unit_matrix = _op(:ones_like, x) input.graph.add_node!(gradient_program_name, unit_matrix * derivative_ops) end end tensor_program end TensorStream.group(gs) end |
#greater(input_a, input_b, name: nil) ⇒ Object
97 98 99 |
# File 'lib/tensor_stream/ops.rb', line 97 def greater(input_a, input_b, name: nil) _op(:greater, input_a, input_b, name: name) end |
#greater_equal(input_a, input_b, name: nil) ⇒ Object
101 102 103 |
# File 'lib/tensor_stream/ops.rb', line 101 def greater_equal(input_a, input_b, name: nil) _op(:greater_equal, input_a, input_b, name: name) end |
#identity(input, name: nil) ⇒ Object
197 198 199 |
# File 'lib/tensor_stream/ops.rb', line 197 def identity(input, name: nil) _op(:identity, input, nil, name: name) end |
#less(input_a, input_b, name: nil) ⇒ Object
89 90 91 |
# File 'lib/tensor_stream/ops.rb', line 89 def less(input_a, input_b, name: nil) _op(:less, input_a, input_b, name: name) end |
#less_equal(input_a, input_b, name: nil) ⇒ Object
105 106 107 |
# File 'lib/tensor_stream/ops.rb', line 105 def less_equal(input_a, input_b, name: nil) _op(:less_equal, input_a, input_b, name: name) end |
#log(input, options = {}) ⇒ Object
250 251 252 253 254 |
# File 'lib/tensor_stream/ops.rb', line 250 def log(input, = {}) [:data_type] ||= :float32 check_allowed_types(input, FLOATING_POINT_TYPES) _op(:log, input, nil, ) end |
#log1p(input, options = {}) ⇒ Object
256 257 258 259 260 |
# File 'lib/tensor_stream/ops.rb', line 256 def log1p(input, = {}) [:data_type] ||= :float32 check_allowed_types(input, FLOATING_POINT_TYPES) _op(:log1p, input, nil, ) end |
#logical_and(input_a, input_b, name: nil) ⇒ Object
93 94 95 |
# File 'lib/tensor_stream/ops.rb', line 93 def logical_and(input_a, input_b, name: nil) _op(:logical_and, input_a, input_b, name: name) end |
#matmul(input_a, input_b, transpose_a: false, transpose_b: false, name: nil) ⇒ Object
273 274 275 276 277 |
# File 'lib/tensor_stream/ops.rb', line 273 def matmul(input_a, input_b, transpose_a: false, transpose_b: false, name: nil) _op(:matmul, input_a, input_b, transpose_a: transpose_a, transpose_b: transpose_b, name: name) end |
#max(input_a, input_b, name: nil) ⇒ Object
158 159 160 161 162 163 |
# File 'lib/tensor_stream/ops.rb', line 158 def max(input_a, input_b, name: nil) check_allowed_types(input_a, NUMERIC_TYPES) check_allowed_types(input_b, NUMERIC_TYPES) _op(:max, input_a, input_b, name: name) end |
#maximum(input_a, input_b, name: nil) ⇒ Object
165 166 167 |
# File 'lib/tensor_stream/ops.rb', line 165 def maximum(input_a, input_b, name: nil) max(input_a, input_b, name: name) end |
#multiply(input_a, input_b, name: nil) ⇒ Object
201 202 203 |
# File 'lib/tensor_stream/ops.rb', line 201 def multiply(input_a, input_b, name: nil) _op(:mul, input_a, input_b, name: name) end |
#negate(input, options = {}) ⇒ Object
177 178 179 |
# File 'lib/tensor_stream/ops.rb', line 177 def negate(input, = {}) _op(:negate, input, nil, ) end |
#not_equal(input_a, input_b, name: nil) ⇒ Object
185 186 187 |
# File 'lib/tensor_stream/ops.rb', line 185 def not_equal(input_a, input_b, name: nil) _op(:not_equal, input_a, input_b, name: name) end |
#ones(shape, dtype: :float32, name: nil) ⇒ Object
85 86 87 |
# File 'lib/tensor_stream/ops.rb', line 85 def ones(shape, dtype: :float32, name: nil) _op(:ones, shape, nil, data_type: dtype, name: name) end |
#ones_like(tensor, dtype: nil, name: nil) ⇒ Object
193 194 195 |
# File 'lib/tensor_stream/ops.rb', line 193 def ones_like(tensor, dtype: nil, name: nil) _op(:ones_like, tensor, nil, data_type: dtype, name: name) end |
#pad(tensor, paddings, mode: 'CONSTANT', name: nil) ⇒ Object
283 284 285 |
# File 'lib/tensor_stream/ops.rb', line 283 def pad(tensor, paddings, mode: 'CONSTANT', name: nil) _op(:pad, tensor, nil, paddings: paddings, mode: mode, name: name) end |
#pow(input_a, input_e, name: nil) ⇒ Object
205 206 207 |
# File 'lib/tensor_stream/ops.rb', line 205 def pow(input_a, input_e, name: nil) _op(:pow, input_a, input_e, name: name) end |
#print(input, data, message: nil, name: nil) ⇒ Object
173 174 175 |
# File 'lib/tensor_stream/ops.rb', line 173 def print(input, data, message: nil, name: nil) _op(:print, input, data, message: , name: name) end |
#random_normal(shape, dtype: :float32, mean: 0.0, stddev: 1.0, seed: nil, name: nil) ⇒ Object
44 45 46 47 |
# File 'lib/tensor_stream/ops.rb', line 44 def random_normal(shape, dtype: :float32, mean: 0.0, stddev: 1.0, seed: nil, name: nil) = { shape: shape, dtype: dtype, mean: mean, stddev: stddev, seed: seed, name: name } _op(:random_normal, nil, nil, ) end |
#random_uniform(shape, dtype: :float32, minval: 0, maxval: 1, seed: nil, name: nil) ⇒ Object
39 40 41 42 |
# File 'lib/tensor_stream/ops.rb', line 39 def random_uniform(shape, dtype: :float32, minval: 0, maxval: 1, seed: nil, name: nil) = { shape: shape, dtype: dtype, minval: minval, maxval: maxval, seed: seed, name: name } _op(:random_uniform, nil, nil, ) end |
#random_uniform_initializer(minval: 0, maxval: 1, seed: nil, dtype: nil) ⇒ Object
73 74 75 |
# File 'lib/tensor_stream/ops.rb', line 73 def random_uniform_initializer(minval: 0, maxval: 1, seed: nil, dtype: nil) TensorStream::Initializer.new(-> { _op(:random_uniform, nil, nil, minval: 0, maxval: 1, seed: seed, data_type: dtype) }) end |
#rank(input, name: nil) ⇒ Object
61 62 63 |
# File 'lib/tensor_stream/ops.rb', line 61 def rank(input, name: nil) _op(:rank, input, name: name) end |
#reciprocal(tensor, name: nil) ⇒ Object
138 139 140 |
# File 'lib/tensor_stream/ops.rb', line 138 def reciprocal(tensor, name: nil) _op(:reciprocal, tensor, nil, name: name) end |
#reduce_mean(input_tensor, axis = nil, keepdims: false, name: nil) ⇒ Object
109 110 111 |
# File 'lib/tensor_stream/ops.rb', line 109 def reduce_mean(input_tensor, axis = nil, keepdims: false, name: nil) _op(:reduce_mean, input_tensor, nil, axis: axis, keepdims: keepdims, name: name) end |
#reduce_prod(input, axis = nil, keepdims: false, name: nil) ⇒ Object
117 118 119 |
# File 'lib/tensor_stream/ops.rb', line 117 def reduce_prod(input, axis = nil, keepdims: false, name: nil) _op(:reduce_prod, input, nil, axis: axis, keepdims: keepdims, name: name) end |
#reduce_sum(input_tensor, axis = nil, keepdims: false, name: nil) ⇒ Object
113 114 115 |
# File 'lib/tensor_stream/ops.rb', line 113 def reduce_sum(input_tensor, axis = nil, keepdims: false, name: nil) _op(:reduce_sum, input_tensor, nil, axis: axis, keepdims: keepdims, name: name) end |
#reshape(tensor, shape, name: nil) ⇒ Object
125 126 127 |
# File 'lib/tensor_stream/ops.rb', line 125 def reshape(tensor, shape, name: nil) _op(:reshape, tensor, shape, name: name) end |
#round(tensor, name: nil) ⇒ Object
133 134 135 136 |
# File 'lib/tensor_stream/ops.rb', line 133 def round(tensor, name: nil) check_allowed_types(tensor, FLOATING_POINT_TYPES) _op(:round, tensor, nil, name: name) end |
#shape(input, name: nil, out_type: :int32) ⇒ Object
57 58 59 |
# File 'lib/tensor_stream/ops.rb', line 57 def shape(input, name: nil, out_type: :int32) _op(:shape, input, nil, name: name, out_type: out_type) end |
#sigmoid(input, name: nil) ⇒ Object
268 269 270 271 |
# File 'lib/tensor_stream/ops.rb', line 268 def sigmoid(input, name: nil) check_allowed_types(input, FLOATING_POINT_TYPES) _op(:sigmoid, input, nil, name: name) end |
#sign(input, name: nil) ⇒ Object
213 214 215 |
# File 'lib/tensor_stream/ops.rb', line 213 def sign(input, name: nil) _op(:sign, input, nil, name: name) end |
#sin(input, options = {}) ⇒ Object
217 218 219 220 221 |
# File 'lib/tensor_stream/ops.rb', line 217 def sin(input, = {}) [:data_type] ||= :float32 check_allowed_types(input, FLOATING_POINT_TYPES) _op(:sin, input, nil, ) end |
#slice(input, start, size, name: nil) ⇒ Object
77 78 79 |
# File 'lib/tensor_stream/ops.rb', line 77 def slice(input, start, size, name: nil) _op(:slice, input, start, size: size, name: name) end |
#sqrt(input, name: nil) ⇒ Object
241 242 243 244 245 246 247 248 |
# File 'lib/tensor_stream/ops.rb', line 241 def sqrt(input, name: nil) = { data_type: input.data_type, name: name } check_allowed_types(input, FLOATING_POINT_TYPES) _op(:sqrt, input, nil, ) end |
#square(tensor, name: nil) ⇒ Object
129 130 131 |
# File 'lib/tensor_stream/ops.rb', line 129 def square(tensor, name: nil) _op(:square, tensor, nil, name: name) end |
#stop_gradient(tensor, options = {}) ⇒ Object
49 50 51 |
# File 'lib/tensor_stream/ops.rb', line 49 def stop_gradient(tensor, = {}) _op(:stop_gradient, tensor, nil, ) end |
#sub(input_a, input_b, name: nil) ⇒ Object
154 155 156 |
# File 'lib/tensor_stream/ops.rb', line 154 def sub(input_a, input_b, name: nil) _op(:sub, input_a, input_b, name: name) end |
#tan(input, options = {}) ⇒ Object
229 230 231 232 233 |
# File 'lib/tensor_stream/ops.rb', line 229 def tan(input, = {}) [:data_type] ||= :float32 check_allowed_types(input, FLOATING_POINT_TYPES) _op(:tan, input, nil, ) end |
#tanh(input, options = {}) ⇒ Object
235 236 237 238 239 |
# File 'lib/tensor_stream/ops.rb', line 235 def tanh(input, = {}) [:data_type] ||= :float32 check_allowed_types(input, FLOATING_POINT_TYPES) _op(:tanh, input, nil, ) end |
#transpose(tensor, perm: nil, name: 'transpose') ⇒ Object
279 280 281 |
# File 'lib/tensor_stream/ops.rb', line 279 def transpose(tensor, perm: nil, name: 'transpose') _op(:transpose, tensor, nil, perm: perm, name: name) end |
#where(condition, true_t = nil, false_t = nil, name: nil) ⇒ Object
146 147 148 |
# File 'lib/tensor_stream/ops.rb', line 146 def where(condition, true_t = nil, false_t = nil, name: nil) _op(:where, true_t, false_t, pred: condition, name: name) end |
#zeros(shape, dtype: :float32, name: nil) ⇒ Object
81 82 83 |
# File 'lib/tensor_stream/ops.rb', line 81 def zeros(shape, dtype: :float32, name: nil) _op(:zeros, shape, nil, data_type: dtype, name: name) end |
#zeros_initializer(options = {}) ⇒ Object
65 66 67 |
# File 'lib/tensor_stream/ops.rb', line 65 def zeros_initializer( = {}) _op(:zeros, nil, nil, ) end |
#zeros_like(tensor, dtype: nil, name: nil) ⇒ Object
189 190 191 |
# File 'lib/tensor_stream/ops.rb', line 189 def zeros_like(tensor, dtype: nil, name: nil) _op(:zeros_like, tensor, nil, data_type: dtype, name: name) end |