Class: TensorStream::Operation
- Defined in:
- lib/tensor_stream/operation.rb
Overview
TensorStream class that defines an operation
Direct Known Subclasses
Instance Attribute Summary collapse
-
#items ⇒ Object
Returns the value of attribute items.
-
#name ⇒ Object
Returns the value of attribute name.
-
#operation ⇒ Object
Returns the value of attribute operation.
-
#options ⇒ Object
Returns the value of attribute options.
-
#outputs ⇒ Object
readonly
Returns the value of attribute outputs.
-
#rank ⇒ Object
Returns the value of attribute rank.
Attributes inherited from Tensor
#breakpoint, #consumers, #data_type, #given_name, #graph, #internal, #is_const, #native_buffer, #shape, #source, #value
Class Method Summary collapse
Instance Method Summary collapse
-
#initialize(operation, input_a, input_b, options = {}) ⇒ Operation
constructor
A new instance of Operation.
- #op ⇒ Object
- #run ⇒ Object
- #set_data_type(passed_data_type) ⇒ Object
- #to_h ⇒ Object
- #to_math(name_only = false, max_depth = 99, _cur_depth = 0) ⇒ Object
- #to_s ⇒ Object
Methods inherited from Tensor
#!=, #*, #**, #+, #-, #-@, #/, #<, #<=, #==, #>, #>=, #[], #and, #auto_math, #breakpoint!, cast_dtype, #collect, detect_type, #dot, #dtype, #eval, #first, #internal?, #matmul, #print!, reset_counters, #to_a, #to_f, #to_i
Methods included from OpHelper
#_op, #cons, #dtype_eval, #format_source, #fp_type?, #i_cons, #i_op, #shape_eval, #val_to_dtype
Constructor Details
#initialize(operation, input_a, input_b, options = {}) ⇒ Operation
Returns a new instance of Operation.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
# File 'lib/tensor_stream/operation.rb', line 7 def initialize(operation, input_a, input_b, = {}) @graph = [:graph] || TensorStream.get_default_graph @operation = operation @rank = [:rank] || 0 @name = [@graph.get_name_scope, [:name] || set_name].compact.join('/') @internal = [:internal] @given_name = @name @source = format_source(caller_locations) @options = @items = [input_a, input_b].map { |i| [:preserve_params_type] ? i : TensorStream.convert_to_tensor(i) } @data_type = set_data_type([:data_type]) @shape = TensorShape.new(infer_shape) @graph.add_node(self) end |
Instance Attribute Details
#items ⇒ Object
Returns the value of attribute items.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def items @items end |
#name ⇒ Object
Returns the value of attribute name.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def name @name end |
#operation ⇒ Object
Returns the value of attribute operation.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def operation @operation end |
#options ⇒ Object
Returns the value of attribute options.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def @options end |
#outputs ⇒ Object (readonly)
Returns the value of attribute outputs.
5 6 7 |
# File 'lib/tensor_stream/operation.rb', line 5 def outputs @outputs end |
#rank ⇒ Object
Returns the value of attribute rank.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def rank @rank end |
Class Method Details
.empty_matrix?(input) ⇒ Boolean
38 39 40 41 42 43 44 45 46 47 48 49 50 |
# File 'lib/tensor_stream/operation.rb', line 38 def self.empty_matrix?(input) if input.is_a?(Array) input.each do |item| if item.is_a?(Array) return false unless empty_matrix?(item) elsif item != 0 || item != 0.0 return false end end end true end |
Instance Method Details
#op ⇒ Object
187 188 189 |
# File 'lib/tensor_stream/operation.rb', line 187 def op self end |
#run ⇒ Object
183 184 185 |
# File 'lib/tensor_stream/operation.rb', line 183 def run eval end |
#set_data_type(passed_data_type) ⇒ Object
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# File 'lib/tensor_stream/operation.rb', line 52 def set_data_type(passed_data_type) case operation when :greater, :less, :equal, :not_equal, :greater_equal, :less_equal :boolean when :shape, :rank :int32 else return passed_data_type if passed_data_type if @items[0] @items[0].data_type elsif @items[1] @items[1].data_type else :unknown end end end |
#to_h ⇒ Object
30 31 32 33 34 35 36 |
# File 'lib/tensor_stream/operation.rb', line 30 def to_h { op: operation, name: name, operands: hashify_tensor(items) } end |
#to_math(name_only = false, max_depth = 99, _cur_depth = 0) ⇒ Object
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# File 'lib/tensor_stream/operation.rb', line 70 def to_math(name_only = false, max_depth = 99, _cur_depth = 0) return @name if max_depth.zero? sub_item = auto_math(items[0], name_only, max_depth - 1, _cur_depth + 1) sub_item2 = auto_math(items[1], name_only, max_depth - 1, _cur_depth + 1) if items[1] out = case operation when :argmax "argmax(#{sub_item},#{[:axis]})" when :negate "-#{sub_item}" when :index "#{sub_item}[#{sub_item2}]" when :slice "#{sub_item}[#{sub_item2}]" when :assign_sub "(#{items[0] ? items[0].name : 'self'} -= #{auto_math(items[1], name_only, 1)})" when :assign_add "(#{items[0] ? items[0].name : 'self'} += #{auto_math(items[1], name_only, 1)})" when :assign "(#{items[0] ? items[0].name : 'self'} = #{auto_math(items[1], name_only, 1)})" when :sin, :cos, :tanh "#{operation}(#{sub_item})" when :add "(#{sub_item} + #{sub_item2})" when :sub "(#{sub_item} - #{sub_item2})" when :pow "(#{sub_item}^#{sub_item2})" when :div "(#{sub_item} / #{sub_item2})" when :mul if auto_math(items[0]) == 1 sub_item2 elsif auto_math(items[1]) == 1 sub_item else "(#{sub_item} * #{sub_item2})" end when :reduce_sum "reduce_sum(|#{sub_item}|)" when :reduce_mean "reduce_mean(|#{sub_item}|)" when :reduce_prod "reduce_prod(|#{sub_item}|)" when :gradients "gradient(#{sub_item})" when :stop_gradient sub_item when :matmul "#{sub_item}.matmul(#{sub_item2})" when :eye "eye(#{sub_item})" when :transpose "transpose(#{sub_item})" when :shape "#{sub_item}.shape" when :exp "e^#{sub_item})" when :ones "ones(#{sub_item})" when :ones_like "ones_like(#{sub_item})" when :flow_group "flow_group(#{items.collect { |i| auto_math(i) }.join(',')})" when :zeros "zeros(#{sub_item})" when :reshape "reshape(#{sub_item},#{sub_item2})" when :rank "#{sub_item}.rank" when :cond "(#{auto_math([:pred], name_only, max_depth - 1, _cur_depth)} ? #{sub_item} : #{sub_item2})" when :less "#{sub_item} < #{sub_item2}" when :less_equal "#{sub_item} <= #{sub_item2}" when :greater "#{sub_item} > #{sub_item2}" when :greater_equal "#{sub_item} >= #{sub_item2}" when :square "#{sub_item}\u00B2" when :log "log(#{sub_item})" when :identity "identity(#{sub_item})" when :print "print(#{sub_item})" when :pad "pad(#{sub_item},#{auto_math([:paddings])})" when :equal "#{sub_item} == #{sub_item2}" when :not_equal "#{sub_item} != #{sub_item2}" when :logical_and "#{sub_item} && #{sub_item2}" when :sqrt "sqrt(#{sub_item})" when :zeros_like "zeros_like(#{sub_item})" when :where "where(#{auto_math([:pred], name_only, max_depth - 1, _cur_depth)}, #{sub_item}, #{sub_item2})" when :max "max(#{sub_item},#{sub_item2})" when :cast "cast(#{sub_item}, #{data_type})" else raise "no math form for #{operation} defined" end ["\n",(_cur_depth + 1).times.collect { ' ' }, out].flatten.join end |
#to_s ⇒ Object
26 27 28 |
# File 'lib/tensor_stream/operation.rb', line 26 def to_s @name end |