Class: Equation

Inherits:
Object
  • Object
show all
Defined in:
lib/symcalc.rb

Instance Method Summary collapse

Instance Method Details

#*(eq) ⇒ Object



34
35
36
# File 'lib/symcalc.rb', line 34

def *(eq)
  return Multiplication.new(self, to_equation(eq))
end

#**(eq) ⇒ Object



50
51
52
# File 'lib/symcalc.rb', line 50

def **(eq)
  return Power.new(self, to_equation(eq))
end

#+(eq) ⇒ Object



42
43
44
# File 'lib/symcalc.rb', line 42

def +(eq)
  return Sum.new(self, to_equation(eq))
end

#-(eq) ⇒ Object



46
47
48
# File 'lib/symcalc.rb', line 46

def -(eq)
  return Subtraction.new(self, to_equation(eq))
end

#/(eq) ⇒ Object



38
39
40
# File 'lib/symcalc.rb', line 38

def /(eq)
  return Division.new(self, to_equation(eq))
end

#__simplify__Object



85
86
87
# File 'lib/symcalc.rb', line 85

def __simplify__
  return self
end

#__sub__(original, replacement) ⇒ Object



211
212
213
214
# File 'lib/symcalc.rb', line 211

def __sub__ original, replacement
  return to_equation(replacement) if self == to_equation(original)
  return self
end

#coerce(other) ⇒ Object



30
31
32
# File 'lib/symcalc.rb', line 30

def coerce(other)
  [to_equation(other), self]
end

#derivative(order: 1, variable: nil) ⇒ Object

Calculate the derivative of the given function Accepts parameters order and variable. If the function has more than one dimensional, the variable needs to be provided

Example: x = SymCalc.var(“x”) y = SymCalc.var(“y”) fx = x ** 2 fx.derivative order: 2

fxy = x ** 2 + 3 * y fxy.derivative variable: x



67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# File 'lib/symcalc.rb', line 67

def derivative(order: 1, variable: nil)
  if variable == nil && self.all_variables.size < 2
    fx = self
    order.times do
      fx = fx.simplify.__derivative__.simplify
    end
    return fx
  elsif variable == nil && self.all_variables.size > 1
    raise "Expected a variable as input for a #{self.all_variables.size}-dimensional function"
  else
    fx = self
    order.times do 
      fx = fx.simplify.__derivative__(variable: variable).simplify
    end
    return fx
  end
end

#eval(var_hash) ⇒ Object

Evaluates the function at given variable values Accepts the hash of variables and their values to evalualte the function

Example: x = SymCalc.var(“x”) fx = x ** 2 puts fx.eval(x: 3)



194
195
196
197
198
199
200
201
202
203
204
205
206
207
# File 'lib/symcalc.rb', line 194

def eval(var_hash)
  if var_hash.values.size == 0
    result = self.__eval__(Hash.new)
  elsif !var_hash.values[0].is_a?(Array)
    result = self.__eval__ var_hash
  elsif var_hash.values[0].is_a? Array
    result = []
    var_hash.values[0].size.times do |i|
      hash = var_hash.map {|k, v| [k, v[i]]}.to_h
      result << self.__eval__(hash)
    end
  end
  result
end

#inspectObject



26
27
28
# File 'lib/symcalc.rb', line 26

def inspect
  self.display()
end

#simplifyObject

Simplifies the given function Accepts no arguments



92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# File 'lib/symcalc.rb', line 92

def simplify
  
  simplified = self.__simplify__
  
  if [Multiplication, Division].include? simplified.class
    m_els = simplified.__get_m_elements__(Hash.new)
    
    if m_els.keys.size == 0
      return EquationValue.new(0)
    elsif m_els.keys.size == 1
      part = m_els.keys[0]
      power = to_equation(m_els.values[0])
      if part == "exp"
        part = (power == to_equation(1)) ? BasicVars::E : Exp.new(power)
      else
        part = part ** power if power != to_equation(1)
      end
      return part
    else      
      els_index = 0
      eq = nil
      
      coeff = to_equation(1)
        
      m_els.size.times do |els_index|
        base = m_els.keys[els_index]
        power = m_els[base]
        
        base = base.simplify if base.is_a? Equation
        power = power.simplify if power.is_a? Equation
        
        base = to_equation base if base != "exp"
        power = to_equation power
        
        if power == to_equation(0)
          next
        end
        
        if base.is_a?(EquationValue) && power.is_a?(EquationValue)
          case power
          when EquationValue.new(1)
            coeff *= base
          else
            coeff *= base ** power
          end
          next
        end
        
        if base == "exp"
          case power
          when to_equation(1)
            part = BasicVars::E
          else
            part = Exp.new(power)
          end
        else
          case power
          when to_equation(1)
            part = base
          else
            part = base ** power
          end
        end
        
        if eq == nil
          eq = part
        else
          eq *= part
        end
        
      end
      
      coeff = coeff.__simplify__
      
      if coeff == to_equation(1)
        eq = eq
      elsif coeff == to_equation(0)
        eq = to_equation(0)
      elsif eq == nil
        eq = coeff
      else
        eq = coeff * eq
      end
      
      return eq
    end
    
  else
    return simplified
  end
  
end

#sub(original, replacement) ⇒ Object

Returns an equation with an expression substituted for the replacement

Example: a = SymCalc.var(“a”) f = a ** 2 x = SymCalc.var(“x”) puts f.sub(a, 3 * x) # => (3 * x) ** 2



224
225
226
# File 'lib/symcalc.rb', line 224

def sub original, replacement
  self.__sub__(original, replacement).simplify
end

#to_sObject



22
23
24
# File 'lib/symcalc.rb', line 22

def to_s
  self.display()
end