Class: SyMath::Poly::Galois
Overview
Class representing a galois field, i.e finite field
Instance Attribute Summary collapse
Attributes inherited from SyMath::Poly
#arr, #var
Instance Method Summary
collapse
#%, #*, #**, #+, #-, #-@, #/, #==, #[], #degree, #lc, #sort_factors, #sort_factors_multiple, #strip!, #to_m, #zero?
Constructor Details
#initialize(args) ⇒ Galois
Create gl instance from dup or a gl of the same order.
9
10
11
12
13
14
15
16
17
18
19
20
21
|
# File 'lib/symath/poly/galois.rb', line 9
def initialize(args)
if args.key?(:dup)
init_from_dup(args[:dup], args[:p])
return
end
if args.key?(:arr)
init_from_array(args[:arr], args[:p], args[:var])
return
end
raise 'Bad arguments for Poly::Galois constructor'
end
|
Instance Attribute Details
#p ⇒ Object
Returns the value of attribute p.
6
7
8
|
# File 'lib/symath/poly/galois.rb', line 6
def p
@p
end
|
Instance Method Details
#add(g) ⇒ Object
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
# File 'lib/symath/poly/galois.rb', line 447
def add(g)
ret = @arr.clone
rd = degree
gd = g.degree
if gd > rd
(gd - rd).times { ret.unshift(0) }
rd += gd - rd
end
(0..gd).each do |i|
ret[rd - i] = (ret[rd - i] + g[gd - i]) % @p
end
return new_gl(ret).strip!
end
|
#add_ground(a) ⇒ Object
484
485
486
|
# File 'lib/symath/poly/galois.rb', line 484
def add_ground(a)
return add(new_gl([a]))
end
|
#assert_order(g) ⇒ Object
Assert that two fields have the same order
54
55
56
57
58
|
# File 'lib/symath/poly/galois.rb', line 54
def assert_order(g)
if @p != g.p
raise 'Fields do not have the same order'
end
end
|
#ddf_zassenhaus ⇒ Object
Deterministic distinct degree factorization
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
# File 'lib/symath/poly/galois.rb', line 251
def ddf_zassenhaus()
x = gl_x
i = 1
g = x
factors = []
f = self
b = f.frobenius_monomial_base
while 2*i <= f.degree
g = g.frobenius_map(f, b)
h = f.gcd(g - x)
if h.arr != [1]
factors << [h, i]
f = f / h
g = g % f
b = f.frobenius_monomial_base
end
i += 1
end
if f.arr != [1]
return factors + [[f, f.degree]]
else
return factors
end
end
|
#diff ⇒ Object
396
397
398
399
400
401
402
|
# File 'lib/symath/poly/galois.rb', line 396
def diff()
d = degree
res = @arr.each_with_index.map { |e, i| e*(d - i) % @p }
res.pop
return new_gl(res).strip!
end
|
#div(g) ⇒ Object
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
|
# File 'lib/symath/poly/galois.rb', line 572
def div(g)
assert_order(g)
df = degree
dg = g.degree
if g.zero?
raise 'Division by zero'
elsif df < dg
return [zero, self.clone]
end
inv = invert(g[0])
h = @arr.clone
dq = df - dg
dr = dg - 1
(0..df).each do |i|
coeff = h[i]
a = [0, dg - i].max
b = [df - i, dr].min
(a..b).each do |j|
coeff -= h[i + j - dg]*g[dg - j]
end
if i <= dq
coeff *= inv
end
h[i] = coeff % @p
end
return [new_gl(h[0..dq]), new_gl(h[dq + 1..-1]).strip!]
end
|
#edf_zassenhaus(n) ⇒ Object
Equal degree factorization
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
# File 'lib/symath/poly/galois.rb', line 291
def edf_zassenhaus(n)
factors = [self.clone]
if degree <= n
return factors
end
nn = degree / n
if @p != 2
b = frobenius_monomial_base
end
while factors.size < nn
r = random_gl(2*n - 1)
if @p == 2
h = r
(2**(n*nn - 1)).times do
r = r.pow_mod(2, self)
h += r
end
g = gcd(h)
else
h = r.pow_pnm1d2(n, self, b)
g = gcd(h - 1)
end
if g.arr != [1] and g != self
factors = g.edf_zassenhaus(n) + (self / g).edf_zassenhaus(n)
end
end
return sort_factors(factors)
end
|
#factor ⇒ Object
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
# File 'lib/symath/poly/galois.rb', line 170
def factor()
(lc, f) = monic
if f.degree < 1
return [lc, []]
end
factors = []
f.sqf_list[1].each do |g, n|
g.factor_sqf[1].each do |h|
factors << [h, n]
end
end
return [lc, sort_factors_multiple(factors)]
end
|
#factor_sqf ⇒ Object
91
92
93
94
95
96
97
98
99
100
101
|
# File 'lib/symath/poly/galois.rb', line 91
def factor_sqf()
(lc, f) = monic
if f.degree < 1
return [lc, zero]
end
factors = f.zassenhaus
return [lc, factors]
end
|
#frobenius_map(g, b) ⇒ Object
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
# File 'lib/symath/poly/galois.rb', line 228
def frobenius_map(g, b)
f = self
m = g.degree
if f.degree >= m
f = rem(g)
end
if f.zero?
return zero
end
n = f.degree
sf = new_gl([f[-1]])
(1..n).each do |i|
sf += b[i]*f[n - i]
end
return sf
end
|
#frobenius_monomial_base ⇒ Object
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
# File 'lib/symath/poly/galois.rb', line 203
def frobenius_monomial_base()
n = degree
if n == 0
return []
end
b = []
b << one
if @p < n
(1..n - 1).each do |i|
mon = b[i - 1].lshift(@p)
b << mon % self
end
elsif n > 1
b << new_gl([1, 0]).pow_mod(@p, self)
(2..n - 1).each do |i|
b << (b[i - 1]*b[1]) % self
end
end
return b
end
|
#gcd(g) ⇒ Object
404
405
406
407
408
409
410
411
412
413
414
|
# File 'lib/symath/poly/galois.rb', line 404
def gcd(g)
assert_order(g)
f = self
while !g.zero?
(f, g) = [g, f.rem(g)]
end
return f.monic[1]
end
|
#gcdex(g) ⇒ Object
Extended gcd for two polynomials
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
# File 'lib/symath/poly/galois.rb', line 340
def gcdex(g)
assert_order(g)
if self.zero? and g.zero?
return [one, zero, zero]
end
(p0, r0) = monic
(p1, r1) = g.monic
if zero?
return [zero, new_gl([invert(p1)]), r1]
end
if g.zero?
return [new_gl([invert(p0)]), zero, r0]
end
s0, s1 = new_gl([invert(p0)]), zero
t0, t1 = zero, new_gl([invert(p1)])
while true
(qq, rr) = r0.div(r1)
if rr.zero?
break
end
r0 = r1
(c, r1) = rr.monic
inv = invert(c)
s = s0 - s1*qq
t = t0 - t1*qq
s0 = s1
s1 = s*inv
t0 = t1
t1 = t*inv
end
return [s1, t1, r1]
end
|
#gl_x ⇒ Object
49
50
51
|
# File 'lib/symath/poly/galois.rb', line 49
def gl_x()
new_gl([1, 0])
end
|
#init_from_array(arr, p, var) ⇒ Object
29
30
31
32
33
|
# File 'lib/symath/poly/galois.rb', line 29
def init_from_array(arr, p, var)
@arr = arr
@p = p
@var = var
end
|
#init_from_dup(dup, p) ⇒ Object
23
24
25
26
27
|
# File 'lib/symath/poly/galois.rb', line 23
def init_from_dup(dup, p)
@arr = dup.arr.map { |t| t % p }
@p = p
@var = dup.var
end
|
#invert(a) ⇒ Object
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
# File 'lib/symath/poly/galois.rb', line 72
def invert(a)
p = @p
raise "No inverse - #{a} and #{p} not coprime" unless a.gcd(p) == 1
return p if p == 1
m0, inv, x0 = p, 1, 0
while a > 1
inv -= (a / p) * x0
a, p = p, a % p
inv, x0 = x0, inv
end
inv += m0 if inv < 0
return inv
end
|
#lshift(n) ⇒ Object
609
610
611
612
613
614
615
|
# File 'lib/symath/poly/galois.rb', line 609
def lshift(n)
if zero?
return zero
else
return new_gl(@arr + [0]*n)
end
end
|
#monic ⇒ Object
Divide coefficients by lc
387
388
389
390
391
392
393
394
|
# File 'lib/symath/poly/galois.rb', line 387
def monic()
if zero?
return self.clone
end
c = lc
return [c, mul_ground(invert(c))]
end
|
#mul(g) ⇒ Object
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
# File 'lib/symath/poly/galois.rb', line 497
def mul(g)
df = degree
dg = g.degree
dh = df + dg
if dh > 0
h = [0]*(dh + 1)
else
h = []
end
(0..dh).each do |i|
coeff = 0
a = [0, i - dg].max
b = [i, df].min
(a..b).each do |j|
coeff += self[j]*g[i - j]
end
h[i] = coeff % p
end
ret = new_gl(h)
ret.strip!
return ret
end
|
#mul_ground(a) ⇒ Object
525
526
527
528
529
530
531
|
# File 'lib/symath/poly/galois.rb', line 525
def mul_ground(a)
if a == 0
return zero
else
return new_gl(@arr.map { |e| a*e % @p})
end
end
|
#neg ⇒ Object
Return the negative of the polynomial
493
494
495
|
# File 'lib/symath/poly/galois.rb', line 493
def neg()
return new_dup(@arr.map { |t| -t % @p })
end
|
#new_gl(arr) ⇒ Object
Convenience method for creating a new gl of the same order and the same variable
37
38
39
|
# File 'lib/symath/poly/galois.rb', line 37
def new_gl(arr)
return SyMath::Poly::Galois.new({ :arr => arr, :p => @p, :var => @var })
end
|
#one ⇒ Object
45
46
47
|
# File 'lib/symath/poly/galois.rb', line 45
def one()
return new_gl([1])
end
|
#pow_mod(n, g) ⇒ Object
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
# File 'lib/symath/poly/galois.rb', line 416
def pow_mod(n, g)
if n == 0
return one
elsif n == 1
return self % g
elsif n == 2
return self**2 % g
end
f = self
h = one
while true
if n.odd?
h = (h*f) % g
n -= 1
end
n >>= 1
if n == 0
break
end
f = f**2 % g
end
return h
end
|
#pow_pnm1d2(n, g, b) ⇒ Object
Compute f**(p**n - 1) / 2 in GF(p)/(g) (Utility function for edf_zassenhaus)
190
191
192
193
194
195
196
197
198
199
200
201
|
# File 'lib/symath/poly/galois.rb', line 190
def pow_pnm1d2(n, g, b)
f = rem(g)
h = f
r = f
(n - 1).times do
h = h.frobenius_map(g, b)
r = (r*h) % g
end
return r.pow_mod((@p - 1)/2, g)
end
|
#quo(g) ⇒ Object
564
565
566
|
# File 'lib/symath/poly/galois.rb', line 564
def quo(g)
return div(g)[0]
end
|
#random_gl(n) ⇒ Object
Generate random polynomial of degree n
284
285
286
287
288
|
# File 'lib/symath/poly/galois.rb', line 284
def random_gl(n)
ret = [1]
(n).times { ret << rand(@p) }
return new_gl(ret)
end
|
#rem(f) ⇒ Object
568
569
570
|
# File 'lib/symath/poly/galois.rb', line 568
def rem(f)
return div(f)[1]
end
|
#sqf_list ⇒ Object
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
# File 'lib/symath/poly/galois.rb', line 114
def sqf_list()
n = 1
sqf = false
factors = []
r = @p
(lc, f) = monic
if degree < 1
return [lc, []]
end
f = self
while true
ff = f.diff
if !ff.zero?
g = f.gcd(ff)
h = f / g
i = 1
while h.arr != [1]
gg = g.gcd(h)
hh = h / gg
if hh.degree > 0
factors << [hh, i*n]
end
g = g / gg
h = gg
i += 1
end
if g.arr == [1]
sqf = true
else
f = g
end
end
if !sqf
d = f.degree/r
f = new_gl((0..d).map { |i| f[i*r] })
n = n*r
else
break
end
end
return [lc, factors]
end
|
#sqf_p ⇒ Object
Return true if polynomial is square free
104
105
106
107
108
109
110
111
112
|
# File 'lib/symath/poly/galois.rb', line 104
def sqf_p()
(lc, f) = monic
if f.zero?
return true
else
return f.gcd(f.diff).arr == [1]
end
end
|
#sqr ⇒ Object
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
# File 'lib/symath/poly/galois.rb', line 533
def sqr()
d = degree
dh = 2*d
h = []
(0..dh).each do |i|
coeff = 0
jmin = [0, i - d].max
jmax = [i, d].min
n = jmax - jmin + 1
jmax = jmin + n/2 - 1
(jmin..jmax).each do |j|
coeff += self[j]*self[i - j]
end
coeff += coeff
if n.odd?
elem = self[jmax + 1]
coeff += elem**2
end
h << coeff % @p
end
return new_gl(h).strip!
end
|
#sub(g) ⇒ Object
Subtract a polynomial from this one
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
# File 'lib/symath/poly/galois.rb', line 466
def sub(g)
ret = @arr.clone
rd = degree
gd = g.degree
if gd > rd
(gd - rd).times { ret.unshift(0) }
rd += gd - rd
end
(0..gd).each do |i|
ret[rd - i] = (ret[rd - i] - g[gd - i]) % @p
end
return new_gl(ret).strip!
end
|
#sub_ground(a) ⇒ Object
488
489
490
|
# File 'lib/symath/poly/galois.rb', line 488
def sub_ground(a)
return sub(new_gl([a]))
end
|
#to_dup ⇒ Object
60
61
62
63
64
65
66
67
68
69
70
|
# File 'lib/symath/poly/galois.rb', line 60
def to_dup()
ret = @arr.map do |e|
if e <= @p / 2
e
else
e - @p
end
end
return SyMath::Poly::DUP.new({ :arr => ret, :var => @var })
end
|
#to_s ⇒ Object
617
618
619
|
# File 'lib/symath/poly/galois.rb', line 617
def to_s()
return @arr.to_s + '/' + @p.to_s
end
|
#zassenhaus ⇒ Object
329
330
331
332
333
334
335
336
337
|
# File 'lib/symath/poly/galois.rb', line 329
def zassenhaus()
factors = []
ddf_zassenhaus.each do |f|
factors += f[0].edf_zassenhaus(f[1])
end
return sort_factors(factors)
end
|
#zero ⇒ Object
41
42
43
|
# File 'lib/symath/poly/galois.rb', line 41
def zero()
return new_gl([])
end
|