Class: SyMath::Poly::DUP
- Inherits:
-
SyMath::Poly
- Object
- SyMath::Poly
- SyMath::Poly::DUP
- Defined in:
- lib/symath/poly/dup.rb
Overview
Class representing a univariate polynomial. The polynomial is represented by an array in of the polynomial coefficients in ‘dense form’, i.e. zero-coefficients are included in the list. The coefficients are stored in decreasing order starting with the highest degree, and ending with the constant.
Instance Attribute Summary
Attributes inherited from SyMath::Poly
Instance Method Summary collapse
-
#add(g) ⇒ Object
Sum two polynomials.
- #content ⇒ Object
-
#diff ⇒ Object
Fast differentiation of polynomial.
- #div(g) ⇒ Object
- #factor ⇒ Object
-
#gcd(g) ⇒ Object
FIXME: Implement heuristic gcd?.
-
#gcdext(x, y) ⇒ Object
Extended gcd for two integers.
- #hensel_lift(p, f_list, l) ⇒ Object
- #hensel_step(m, g, h, s, t) ⇒ Object
- #init_from_array(arr, var) ⇒ Object
- #init_from_exp(e) ⇒ Object
-
#initialize(args) ⇒ DUP
constructor
A new instance of DUP.
- #l1_norm ⇒ Object
- #lshift(n) ⇒ Object
- #max_norm ⇒ Object
- #minus_one ⇒ Object
- #mul(g) ⇒ Object
- #mul_ground(c) ⇒ Object
-
#mul_term(c, j) ⇒ Object
Multiply a polynomial with a single term.
-
#neg ⇒ Object
Return the negative of the polynomial.
-
#new_dup(arr) ⇒ Object
Convenience method.
- #one ⇒ Object
-
#primitive ⇒ Object
Compute content and primitive form.
-
#pseudo_rem(g) ⇒ Object
Compute pseudo remainder of self / g.
- #quo(g) ⇒ Object
-
#quo_ground(c) ⇒ Object
Quotient by constant for each coefficient.
- #rshift(n) ⇒ Object
-
#slice(a, b) ⇒ Object
Slice of polynomial between two degrees, >= a and < b.
-
#sqf_list ⇒ Object
Decompose a polynomial into square free components.
-
#sqf_part ⇒ Object
Return square free part of f.
-
#sub(g) ⇒ Object
Subtract a polynomial from this one.
-
#subresultants(g) ⇒ Object
Calculate subresultants of polynomials self and g.
- #to_galois(p) ⇒ Object
- #to_s ⇒ Object
- #trial_division(factors) ⇒ Object
- #trunc(p) ⇒ Object
-
#zassenhaus ⇒ Object
Zassenhaus algorithm for factorizing square free polynomial.
-
#zero ⇒ Object
Convenience methods for creating some commonly used constant polynomials.
Methods inherited from SyMath::Poly
#%, #*, #**, #+, #-, #-@, #/, #==, #[], #degree, #lc, #sort_factors, #sort_factors_multiple, #strip!, #to_m, #zero?
Constructor Details
#initialize(args) ⇒ DUP
Returns a new instance of DUP.
12 13 14 15 16 17 18 19 20 21 22 23 24 |
# File 'lib/symath/poly/dup.rb', line 12 def initialize(args) if args.is_a?(SyMath::Value) init_from_exp(args) return end if args.key?(:arr) init_from_array(args[:arr], args[:var]) return end raise 'Bad arguments for Poly::DUP constructor' end |
Instance Method Details
#add(g) ⇒ Object
Sum two polynomials
634 635 636 637 638 639 640 641 642 643 644 645 646 |
# File 'lib/symath/poly/dup.rb', line 634 def add(g) ret = @arr.clone if g.degree > degree (g.degree - degree).times { ret.unshift(0) } end (0..g.degree).each do |i| ret[ret.size - i - 1] += g[g.degree - i] end return new_dup(ret).strip! end |
#content ⇒ Object
571 572 573 574 575 576 577 578 579 580 581 |
# File 'lib/symath/poly/dup.rb', line 571 def content() cont = 0 @arr.each do |c| cont = cont.gcd(c) break if cont == 1 end return cont end |
#diff ⇒ Object
Fast differentiation of polynomial
430 431 432 433 434 435 436 |
# File 'lib/symath/poly/dup.rb', line 430 def diff d = degree res = @arr.each_with_index.map { |e, i| e*(d - i) } res.pop return new_dup(res) end |
#div(g) ⇒ Object
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
# File 'lib/symath/poly/dup.rb', line 767 def div(g) # returns qv and r such that: # f = fv*qv + r df = degree dg = g.degree if g.zero? raise 'Division by zero' elsif df < dg return [zero, self.clone] # no quotient, f is remainder end # Start with f as remainder, no quotient q = zero r = self dr = df lc_g = g.lc while true lc_r = r.lc if (lc_r % lc_g) != 0 break end c = lc_r / lc_g j = dr - dg q = q + one.mul_term(c, j) r = r - g.mul_term(c, j) _dr = dr dr = r.degree if dr < dg break elsif dr >= _dr raise 'Polynomial division failed' end end return [q, r] end |
#factor ⇒ Object
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# File 'lib/symath/poly/dup.rb', line 123 def factor # Transform to primitive form (cont, g) = primitive # Transform left coefficient to positive if g.lc < 0 cont = -cont g = -g end n = g.degree # Handle some rivial cases if n <= 0 # 0, cont return [cont, []] elsif n == 1 # cont*(a*x + b) return [cont, [[g, 1]]] end # Remove square factors g = g.sqf_part # Use the zassenhaus algorithm to compute candidate factors h = g.zassenhaus # Check each of the candidate factors by dividing the original # polynomial with each of them until the quotient is 1. factors = trial_division(h) return [cont, factors] end |
#gcd(g) ⇒ Object
FIXME: Implement heuristic gcd?
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# File 'lib/symath/poly/dup.rb', line 462 def gcd(g) # Trivial cases if zero? and g.zero? return [zero, zero, zero] end if zero? if g.lc >= 0 return [g, zero, one] else return [-g, zero, minus_one] end end if g.zero? if lc >= 0 return [f, one, zero] else return [-f, zero, one] end end (fc, ff) = primitive (gc, gg) = g.primitive c = fc.gcd(gc) h = subresultants(g)[-1] h = h.primitive[1] if (h.lc < 0) c = -c end h = h*c cff = self/h cfg = g/h return [h, cff, cfg] end |
#gcdext(x, y) ⇒ Object
Extended gcd for two integers
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# File 'lib/symath/poly/dup.rb', line 439 def gcdext(x, y) if x < 0 g, a, b = gcdext(-x, y) return [g, -a, b] end if y < 0 g, a, b = gcdext(x, -y) return [g, a, -b] end r0, r1 = x, y a0 = b1 = 1 a1 = b0 = 0 until r1.zero? q = r0 / r1 r0, r1 = r1, r0 - q*r1 a0, a1 = a1, a0 - q*a1 b0, b1 = b1, b0 - q*b1 end return [r0, a0, b0] end |
#hensel_lift(p, f_list, l) ⇒ Object
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# File 'lib/symath/poly/dup.rb', line 211 def hensel_lift(p, f_list, l) r = f_list.size lcf = lc if r == 1 ff = self * gcdext(lcf, p**l)[1] return [ ff % (p**l) ] end m = p k = r / 2 d = CMath.log(l, 2).ceil g = new_dup([lcf]).to_galois(p) f_list[0..k - 1].each do |f_i| g = g*f_i.to_galois(p) end h = f_list[k].to_galois(p) f_list[k + 1..-1].each do |f_i| h = h*f_i.to_galois(p) end (s, t, x) = g.gcdex(h) g = g.to_dup h = h.to_dup s = s.to_dup t = t.to_dup d.times do (g, h, s, t) = hensel_step(m, g, h, s, t) m = m**2 end return g.hensel_lift(p, f_list[0..k - 1], l) + h.hensel_lift(p, f_list[k..-1], l) end |
#hensel_step(m, g, h, s, t) ⇒ Object
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# File 'lib/symath/poly/dup.rb', line 181 def hensel_step(m, g, h, s, t) mm = m**2 e = (self - g*h) % mm (q, r) = (s*e).div(h) q = q % mm r = r % mm u = t*e + q*g gg = (g + u) % mm hh = (h + r) % mm u = s*gg + t*hh b = (u - one) % mm (c, d) = (s*b).div(hh) c = c % mm d = d % mm u = t*b + c*gg ss = (s - d) % mm tt = (t - u) % mm return [gg, hh, ss, tt] end |
#init_from_array(arr, var) ⇒ Object
26 27 28 29 |
# File 'lib/symath/poly/dup.rb', line 26 def init_from_array(arr, var) @arr = arr @var = var end |
#init_from_exp(e) ⇒ Object
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# File 'lib/symath/poly/dup.rb', line 31 def init_from_exp(e) # From this point, expect e to be a SyMath::Value error = 'Expression ' + e.to_s + ' is not an univariate polynomial' max_degree = 0 terms = {} # Assert that this really is an univariate polynomial, and build # the dup array representation. e.terms.each do |s| var = nil c = 1 d = 0 s.factors.each do |f| if f.is_a?(SyMath::Fraction) raise error end if f == -1 c *= -1 elsif f.is_number? c *= f.value else if !var.nil? raise error end var = f.base if !var.is_a?(SyMath::Definition::Variable) raise error end if !f.exponent.is_number? raise error end d = f.exponent.value end end if !var.nil? if @var.nil? @var = var elsif @var != var raise error end end if terms.key?(d) terms[d] += c else terms[d] = c end if d > max_degree max_degree = d end end @arr = (0..max_degree).to_a.reverse.map do |d| if terms.key?(d) terms[d] else 0 end end strip! end |
#l1_norm ⇒ Object
627 628 629 630 631 |
# File 'lib/symath/poly/dup.rb', line 627 def l1_norm() return 0 if zero? return @arr.map { |e| e.abs }.inject(:+) end |
#lshift(n) ⇒ Object
583 584 585 586 587 588 589 |
# File 'lib/symath/poly/dup.rb', line 583 def lshift(n) if zero? return zero else return new_dup(@arr + [0]*n) end end |
#max_norm ⇒ Object
823 824 825 826 827 828 829 |
# File 'lib/symath/poly/dup.rb', line 823 def max_norm() if zero? return 0 else return @arr.map { |e| e.abs }.max end end |
#minus_one ⇒ Object
119 120 121 |
# File 'lib/symath/poly/dup.rb', line 119 def minus_one() return new_dup([-1]) end |
#mul(g) ⇒ Object
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
# File 'lib/symath/poly/dup.rb', line 668 def mul(g) if self == g return self**2 end if zero? and g.zero? return zero end df = degree dg = g.degree n = [df, dg].max + 1 if n < 100 h = [] (0..df + dg).each do |i| coeff = 0 a = [0, i - dg].max b = [df, i].min (a..b).each do |j| coeff += self[j]*g[i - j] end h << coeff end return new_dup(h).strip! else # Use Karatsuba's algorithm for large polygons. n2 = n/2 fl = slice(0, n2) gl = g.slice(0, n2) fh = slice(n2, n).rshift(n2) gh = g.slice(n2, n).rshift(n2) lo = fl*gl hi = fh*gh mid = (fl + fh)*(gl + gh) mid -= lo + hi return lo + mid.lshift(n2) + hi.lshift(2*n2) end end |
#mul_ground(c) ⇒ Object
717 718 719 720 |
# File 'lib/symath/poly/dup.rb', line 717 def mul_ground(c) ret = @arr.map { |t| t*c } return new_dup(ret).strip! end |
#mul_term(c, j) ⇒ Object
Multiply a polynomial with a single term.
723 724 725 726 727 728 |
# File 'lib/symath/poly/dup.rb', line 723 def mul_term(c, j) ret = @arr.map { |t| t*c } j.times { ret.push(0) } return new_dup(ret).strip! end |
#neg ⇒ Object
Return the negative of the polynomial
664 665 666 |
# File 'lib/symath/poly/dup.rb', line 664 def neg() return new_dup(@arr.map { |t| -t }) end |
#new_dup(arr) ⇒ Object
Convenience method. Returns a a new instance from array, on the same variable as this instance.
106 107 108 |
# File 'lib/symath/poly/dup.rb', line 106 def new_dup(arr) return self.class.new({ :arr => arr, :var => @var }) end |
#one ⇒ Object
115 116 117 |
# File 'lib/symath/poly/dup.rb', line 115 def one() return new_dup([1]) end |
#primitive ⇒ Object
Compute content and primitive form
557 558 559 560 561 562 563 564 565 566 567 568 569 |
# File 'lib/symath/poly/dup.rb', line 557 def primitive() if zero? return [0, self.clone] end cont = content if cont == 1 return [cont, self.clone] else return [cont, self/cont] end end |
#pseudo_rem(g) ⇒ Object
Compute pseudo remainder of self / g
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
# File 'lib/symath/poly/dup.rb', line 731 def pseudo_rem(g) df = self.degree dg = g.degree r = self dr = df if g.zero? raise 'Division by zero' elsif df < dg return self.clone # self is remainder end n = df - dg + 1 while true j = dr - dg n -= 1 rr = r*g.lc gg = g.mul_term(r.lc, j) r = rr - gg _dr = dr dr = r.degree if dr < dg break elsif !(dr < _dr) raise 'Polynomial division failed' end end return r*g.lc**n end |
#quo(g) ⇒ Object
812 813 814 |
# File 'lib/symath/poly/dup.rb', line 812 def quo(g) return div(g)[0] end |
#quo_ground(c) ⇒ Object
Quotient by constant for each coefficient
817 818 819 820 821 |
# File 'lib/symath/poly/dup.rb', line 817 def quo_ground(c) ret = @arr.map { |t| t.to_i/c.to_i } return new_dup(ret).strip! end |
#rshift(n) ⇒ Object
591 592 593 |
# File 'lib/symath/poly/dup.rb', line 591 def rshift(n) return new_dup(@arr[0..-n - 1]) end |
#slice(a, b) ⇒ Object
Slice of polynomial between two degrees, >= a and < b
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# File 'lib/symath/poly/dup.rb', line 596 def slice(a, b) s = @arr.size aa = [0, s - a].max bb = [0, s - b].max if aa <= 0 return zero end ret = @arr[bb..aa-1] if ret == [] return zero else return new_dup(ret + [0]*a) end end |
#sqf_list ⇒ Object
Decompose a polynomial into square free components
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# File 'lib/symath/poly/dup.rb', line 391 def sqf_list() (coeff, f) = primitive if f.lc < 0 f = -f coeff = -coeff end # Trivial case, constant polynomial if f.degree <= 0 return coeff, [] end res = [] i = 1 (g, p, q) = f.gcd(f.diff) while true h = q - p.diff if h.zero? res << [p, i] break end (g, p, q) = p.gcd(h) if g.degree > 0 res << [g, i] end i += 1 end return [coeff, res] end |
#sqf_part ⇒ Object
Return square free part of f
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# File 'lib/symath/poly/dup.rb', line 373 def sqf_part() # Trivial case if zero? return self.clone end if lc < 0 f = -self else f = self end sqf = f/f.gcd(f.diff)[0] return sqf.primitive[1] end |
#sub(g) ⇒ Object
Subtract a polynomial from this one
649 650 651 652 653 654 655 656 657 658 659 660 661 |
# File 'lib/symath/poly/dup.rb', line 649 def sub(g) ret = @arr.clone if g.degree > degree (g.degree - degree).times { ret.unshift(0) } end (0..g.degree).each do |i| ret[ret.size - i - 1] -= g[g.degree - i] end return new_dup(ret).strip! end |
#subresultants(g) ⇒ Object
Calculate subresultants of polynomials self and g
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
# File 'lib/symath/poly/dup.rb', line 504 def subresultants(g) f = self n = f.degree m = g.degree if n < m f, g = g, f n, m = m, n end if f.zero? return [] end if g.zero? return [f.clone] end r = [f.clone, g.clone] d = n - m b = (-1)**(d + 1) h = f.pseudo_rem(g)*b lc = g.lc c = -(lc**d) while !h.zero? k = h.degree r << h f, g, m, d = g, h, k, m - k b = -lc * c**d h = f.pseudo_rem(g)/b lc = g.lc if d > 1 q = c**(d - 1) c = ((-lc)**d).to_i/q.to_i else c = -lc end end return r end |
#to_galois(p) ⇒ Object
100 101 102 |
# File 'lib/symath/poly/dup.rb', line 100 def to_galois(p) return SyMath::Poly::Galois.new({ :dup => self, :p => p }) end |
#to_s ⇒ Object
831 832 833 |
# File 'lib/symath/poly/dup.rb', line 831 def to_s() return @arr.to_s end |
#trial_division(factors) ⇒ Object
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# File 'lib/symath/poly/dup.rb', line 157 def trial_division(factors) result = [] f = self factors.each do |factor| k = 0 while true (q, r) = f.div(factor) if r.zero? f = q k += 1 else break end end result << [factor, k] end return sort_factors_multiple(result) end |
#trunc(p) ⇒ Object
614 615 616 617 618 619 620 621 622 623 624 625 |
# File 'lib/symath/poly/dup.rb', line 614 def trunc(p) ret = @arr.map do |e| ep = e % p if ep > p / 2 ep - p else ep end end return new_dup(ret).strip! end |
#zassenhaus ⇒ Object
Zassenhaus algorithm for factorizing square free polynomial
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# File 'lib/symath/poly/dup.rb', line 253 def zassenhaus() n = degree # Trivial case, a*x + b if n == 1 return [self.clone] end # Calculate bound of px: # n = deg(f) # B = sqrt(n + 1)*2^n*max_norm(f)*lc(f) # C = (n + 1)^2n*A^(2n - 1) # gm = 2log(cc,2) # bound = 2*gm*ln(gm) fc = self[-1] aa = max_norm b = lc bb = (CMath.sqrt(n + 1).floor*2**n*aa*b).abs.to_i # Integer square root?? cc = ((n + 1)**(2*n)*aa**(2*n - 1)).to_i gamma = (2*CMath.log(cc, 2)).ceil bound = (2*gamma*CMath.log(gamma)).to_i a = [] # Choose a prime number p such that f be square free in Z_p # if there are many factors in Z_p, choose among a few different p # the one with fewer factors (3..bound).each do |px| # Skip non prime px and px which do not divide lc(f) if !Prime.prime?(px) or (b % px) == 0 next end # px = convert(px) ??? # Convert f to a galois field of order px ff = self.to_galois(px) # Skip if ff has square factors if !ff.sqf_p next end # Factorize ff and store all factors together with its order px fsqfx = ff.factor_sqf[1] a << [px, fsqfx] if fsqfx.size < 15 or a.size > 4 break end end # Select the factor list with the fewest factors. (p, fsqf) = a.min { |x| x[1].size } l = CMath.log(2*bb + 1, p).ceil # Convert the factors back to integer polynomials modular = fsqf.map { |ff| ff.to_dup } # Hensel lift of modular -> g g = hensel_lift(p, modular, l) # Start with T as the set of factors in array g. tt = (0..g.size - 1).to_a factors = [] s = 1 pl = p**l # pl =~ 2*bb + 1 f = self while 2*s <= tt.size inc_s = true tt.combination(s).each do |ss| # Calculate G as the product of the subset S of factors. Lift # the constant coefficient of G. gg = new_dup([b]) ss.each { |i| gg = gg*g[i] } gg = (gg % pl).primitive[1] q = gg[-1] # If it does not divide the input polynomial constant (fc), G # does not divide the input polynomial. if q != 0 and fc % q != 0 next end tt_new = tt - ss # Calculate H as the product of the remaining factors in T. hh = new_dup([b]) tt_new.each { |i| hh = hh*g[i] } hh = hh % pl # If the norm of the candidate G and the remaining H are bigger than # the bound B, we have a valid candidate. # - Store it in the factors list # - Remove its corresponding selection from T # - Continue with H as the remaining polynomial if gg.l1_norm*hh.l1_norm <= bb tt = tt_new gg = gg.primitive[1] f = hh.primitive[1] factors << gg b = f.lc inc_s = false break end end s += 1 if inc_s end return factors + [f] end |
#zero ⇒ Object
Convenience methods for creating some commonly used constant polynomials
111 112 113 |
# File 'lib/symath/poly/dup.rb', line 111 def zero() return new_dup([0]) end |