Class: SVMKit::Ensemble::RandomForestRegressor
- Inherits:
-
Object
- Object
- SVMKit::Ensemble::RandomForestRegressor
- Includes:
- Base::BaseEstimator, Base::Regressor
- Defined in:
- lib/svmkit/ensemble/random_forest_regressor.rb
Overview
RandomForestRegressor is a class that implements random forest for regression
Instance Attribute Summary collapse
-
#estimators ⇒ Array<DecisionTreeRegressor>
readonly
Return the set of estimators.
-
#feature_importances ⇒ Numo::DFloat
readonly
Return the importance for each feature.
-
#rng ⇒ Random
readonly
Return the random generator for random selection of feature index.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#apply(x) ⇒ Numo::Int32
Return the index of the leaf that each sample reached.
-
#fit(x, y) ⇒ RandomForestRegressor
Fit the model with given training data.
-
#initialize(n_estimators: 10, criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ RandomForestRegressor
constructor
Create a new regressor with random forest.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Constructor Details
#initialize(n_estimators: 10, criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ RandomForestRegressor
Create a new regressor with random forest.
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 50 def initialize(n_estimators: 10, criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, max_features: max_features, random_seed: random_seed) check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf) check_params_string(criterion: criterion) check_params_positive(n_estimators: n_estimators, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features) @params = {} @params[:n_estimators] = n_estimators @params[:criterion] = criterion @params[:max_depth] = max_depth @params[:max_leaf_nodes] = max_leaf_nodes @params[:min_samples_leaf] = min_samples_leaf @params[:max_features] = max_features @params[:random_seed] = random_seed @params[:random_seed] ||= srand @estimators = nil @feature_importances = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#estimators ⇒ Array<DecisionTreeRegressor> (readonly)
Return the set of estimators.
27 28 29 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 27 def estimators @estimators end |
#feature_importances ⇒ Numo::DFloat (readonly)
Return the importance for each feature.
31 32 33 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 31 def feature_importances @feature_importances end |
#rng ⇒ Random (readonly)
Return the random generator for random selection of feature index.
35 36 37 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 35 def rng @rng end |
Instance Method Details
#apply(x) ⇒ Numo::Int32
Return the index of the leaf that each sample reached.
118 119 120 121 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 118 def apply(x) SVMKit::Validation.check_sample_array(x) Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose end |
#fit(x, y) ⇒ RandomForestRegressor
Fit the model with given training data.
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 79 def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) # Initialize some variables. n_samples, n_features = x.shape @params[:max_features] = Math.sqrt(n_features).to_i unless @params[:max_features].is_a?(Integer) @params[:max_features] = [[1, @params[:max_features]].max, n_features].min @feature_importances = Numo::DFloat.zeros(n_features) single_target = y.shape[1].nil? # Construct forest. @estimators = Array.new(@params[:n_estimators]) do tree = Tree::DecisionTreeRegressor.new( criterion: @params[:criterion], max_depth: @params[:max_depth], max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf], max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values.int_max) ) bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) } tree.fit(x[bootstrap_ids, true], single_target ? y[bootstrap_ids] : y[bootstrap_ids, true]) @feature_importances += tree.feature_importances tree end @feature_importances /= @feature_importances.sum self end |
#marshal_dump ⇒ Hash
Dump marshal data.
125 126 127 128 129 130 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 125 def marshal_dump { params: @params, estimators: @estimators, feature_importances: @feature_importances, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
134 135 136 137 138 139 140 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 134 def marshal_load(obj) @params = obj[:params] @estimators = obj[:estimators] @feature_importances = obj[:feature_importances] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
109 110 111 112 |
# File 'lib/svmkit/ensemble/random_forest_regressor.rb', line 109 def predict(x) check_sample_array(x) @estimators.map { |est| est.predict(x) }.reduce(&:+) / @params[:n_estimators] end |