Class: SVMKit::PolynomialModel::FactorizationMachineRegressor

Inherits:
Object
  • Object
show all
Includes:
Base::BaseEstimator, Base::Regressor
Defined in:
lib/svmkit/polynomial_model/factorization_machine_regressor.rb

Overview

FactorizationMachineRegressor is a class that implements Factorization Machine with stochastic gradient descent (SGD) optimization.

Reference

    1. Rendle, “Factorization Machines with libFM,” ACM TIST, vol. 3 (3), pp. 57:1–57:22, 2012.

    1. Rendle, “Factorization Machines,” Proc. ICDM’10, pp. 995–1000, 2010.

Examples:

estimator =
  SVMKit::PolynomialModel::FactorizationMachineRegressor.new(
   n_factors: 10, reg_param_linear: 0.1, reg_param_factor: 0.1,
   max_iter: 5000, batch_size: 50, random_seed: 1)
estimator.fit(training_samples, traininig_values)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Regressor

#score

Constructor Details

#initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil) ⇒ FactorizationMachineRegressor

Create a new regressor with Factorization Machine.

Parameters:

  • n_factors (Integer) (defaults to: 2)

    The maximum number of iterations.

  • reg_param_linear (Float) (defaults to: 1.0)

    The regularization parameter for linear model.

  • reg_param_factor (Float) (defaults to: 1.0)

    The regularization parameter for factor matrix.

  • max_iter (Integer) (defaults to: 1000)

    The maximum number of iterations.

  • batch_size (Integer) (defaults to: 10)

    The size of the mini batches.

  • optimizer (Optimizer) (defaults to: nil)

    The optimizer to calculate adaptive learning rate. If nil is given, Nadam is used.

  • random_seed (Integer) (defaults to: nil)

    The seed value using to initialize the random generator.



55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 55

def initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0,
               max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
  check_params_float(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor)
  check_params_integer(n_factors: n_factors, max_iter: max_iter, batch_size: batch_size)
  check_params_type_or_nil(Integer, random_seed: random_seed)
  check_params_positive(n_factors: n_factors, reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
                        max_iter: max_iter, batch_size: batch_size)
  @params = {}
  @params[:n_factors] = n_factors
  @params[:reg_param_linear] = reg_param_linear
  @params[:reg_param_factor] = reg_param_factor
  @params[:max_iter] = max_iter
  @params[:batch_size] = batch_size
  @params[:optimizer] = optimizer
  @params[:optimizer] ||= Optimizer::Nadam.new
  @params[:random_seed] = random_seed
  @params[:random_seed] ||= srand
  @factor_mat = nil
  @weight_vec = nil
  @bias_term = nil
  @rng = Random.new(@params[:random_seed])
end

Instance Attribute Details

#bias_termNumo::DFloat (readonly)

Return the bias term for Factoriazation Machine.

Returns:

  • (Numo::DFloat)

    (shape: [n_outputs])



39
40
41
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 39

def bias_term
  @bias_term
end

#factor_matNumo::DFloat (readonly)

Return the factor matrix for Factorization Machine.

Returns:

  • (Numo::DFloat)

    (shape: [n_outputs, n_factors, n_features])



31
32
33
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 31

def factor_mat
  @factor_mat
end

#rngRandom (readonly)

Return the random generator for random sampling.

Returns:

  • (Random)


43
44
45
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 43

def rng
  @rng
end

#weight_vecNumo::DFloat (readonly)

Return the weight vector for Factorization Machine.

Returns:

  • (Numo::DFloat)

    (shape: [n_outputs, n_features])



35
36
37
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 35

def weight_vec
  @weight_vec
end

Instance Method Details

#fit(x, y) ⇒ FactorizationMachineRegressor

Fit the model with given training data.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The training data to be used for fitting the model.

  • y (Numo::Int32)

    (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.

Returns:



83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 83

def fit(x, y)
  check_sample_array(x)
  check_tvalue_array(y)
  check_sample_tvalue_size(x, y)

  n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
  _n_samples, n_features = x.shape

  if n_outputs > 1
    @factor_mat = Numo::DFloat.zeros(n_outputs, @params[:n_factors], n_features)
    @weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
    @bias_term = Numo::DFloat.zeros(n_outputs)
    n_outputs.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = single_fit(x, y[true, n]) }
  else
    @factor_mat, @weight_vec, @bias_term = single_fit(x, y)
  end

  self
end

#marshal_dumpHash

Dump marshal data.

Returns:

  • (Hash)

    The marshal data about FactorizationMachineRegressor.



120
121
122
123
124
125
126
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 120

def marshal_dump
  { params: @params,
    factor_mat: @factor_mat,
    weight_vec: @weight_vec,
    bias_term: @bias_term,
    rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.

Returns:

  • (nil)


130
131
132
133
134
135
136
137
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 130

def marshal_load(obj)
  @params = obj[:params]
  @factor_mat = obj[:factor_mat]
  @weight_vec = obj[:weight_vec]
  @bias_term = obj[:bias_term]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::DFloat

Predict values for samples.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to predict the values.

Returns:

  • (Numo::DFloat)

    (shape: [n_samples, n_outputs]) Predicted values per sample.



107
108
109
110
111
112
113
114
115
116
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 107

def predict(x)
  check_sample_array(x)
  linear_term = @bias_term + x.dot(@weight_vec.transpose)
  factor_term = if @weight_vec.shape[1].nil?
                  0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
                else
                  0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
                end
  linear_term + factor_term
end