Class: SVMKit::EvaluationMeasure::NormalizedMutualInformation
- Inherits:
-
Object
- Object
- SVMKit::EvaluationMeasure::NormalizedMutualInformation
- Includes:
- Base::Evaluator
- Defined in:
- lib/svmkit/evaluation_measure/normalized_mutual_information.rb
Overview
NormalizedMutualInformation is a class that calculates the normalized mutual information of cluatering results.
Reference
-
C D. Manning, P. Raghavan, and H. Schutze, “Introduction to Information Retrieval,” Cambridge University Press., 2008.
-
N X. Vinh, J. Epps, and J. Bailey, “Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance,” J. Machine Learning Research, vol. 11, pp. 2837–1854, 2010.
Instance Method Summary collapse
-
#score(y_true, y_pred) ⇒ Float
Calculate noramlzied mutual information.
Instance Method Details
#score(y_true, y_pred) ⇒ Float
Calculate noramlzied mutual information
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/svmkit/evaluation_measure/normalized_mutual_information.rb', line 25 def score(y_true, y_pred) SVMKit::Validation.check_label_array(y_true) SVMKit::Validation.check_label_array(y_pred) # initiazlie some variables. mutual_information = 0.0 n_samples = y_pred.size class_ids = y_true.to_a.uniq cluster_ids = y_pred.to_a.uniq # calculate entropy. class_entropy = -1.0 * class_ids.map do |k| ratio = y_true.eq(k).count.fdiv(n_samples) ratio * Math.log(ratio) end.reduce(:+) return 0.0 if class_entropy.zero? cluster_entropy = -1.0 * cluster_ids.map do |k| ratio = y_pred.eq(k).count.fdiv(n_samples) ratio * Math.log(ratio) end.reduce(:+) return 0.0 if cluster_entropy.zero? # calculate mutual information. cluster_ids.map do |k| pr_sample_ids = y_pred.eq(k).where.to_a n_pr_samples = pr_sample_ids.size class_ids.map do |j| tr_sample_ids = y_true.eq(j).where.to_a n_tr_samples = tr_sample_ids.size n_intr_samples = (pr_sample_ids & tr_sample_ids).size if n_intr_samples > 0 mutual_information += n_intr_samples.fdiv(n_samples) * Math.log((n_samples * n_intr_samples).fdiv(n_pr_samples * n_tr_samples)) end end end # return normalized mutual information. mutual_information / Math.sqrt(class_entropy * cluster_entropy) end |