Class: SVMKit::PolynomialModel::FactorizationMachineRegressor
- Inherits:
-
Object
- Object
- SVMKit::PolynomialModel::FactorizationMachineRegressor
- Includes:
- Base::BaseEstimator, Base::Regressor
- Defined in:
- lib/svmkit/polynomial_model/factorization_machine_regressor.rb
Overview
FactorizationMachineRegressor is a class that implements Factorization Machine with stochastic gradient descent (SGD) optimization.
Reference
-
Rendle, “Factorization Machines with libFM,” ACM TIST, vol. 3 (3), pp. 57:1–57:22, 2012.
-
-
Rendle, “Factorization Machines,” Proc. ICDM’10, pp. 995–1000, 2010.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term for Factoriazation Machine.
-
#factor_mat ⇒ Numo::DFloat
readonly
Return the factor matrix for Factorization Machine.
-
#rng ⇒ Random
readonly
Return the random generator for random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Factorization Machine.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x, y) ⇒ FactorizationMachineRegressor
Fit the model with given training data.
-
#initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil) ⇒ FactorizationMachineRegressor
constructor
Create a new regressor with Factorization Machine.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Constructor Details
#initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil) ⇒ FactorizationMachineRegressor
Create a new regressor with Factorization Machine.
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 55 def initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil) check_params_float(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor) check_params_integer(n_factors: n_factors, max_iter: max_iter, batch_size: batch_size) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(n_factors: n_factors, reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:n_factors] = n_factors @params[:reg_param_linear] = reg_param_linear @params[:reg_param_factor] = reg_param_factor @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:optimizer] = optimizer @params[:optimizer] ||= Optimizer::Nadam.new @params[:random_seed] = random_seed @params[:random_seed] ||= srand @factor_mat = nil @weight_vec = nil @bias_term = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term for Factoriazation Machine.
39 40 41 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 39 def bias_term @bias_term end |
#factor_mat ⇒ Numo::DFloat (readonly)
Return the factor matrix for Factorization Machine.
31 32 33 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 31 def factor_mat @factor_mat end |
#rng ⇒ Random (readonly)
Return the random generator for random sampling.
43 44 45 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 43 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Factorization Machine.
35 36 37 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 35 def weight_vec @weight_vec end |
Instance Method Details
#fit(x, y) ⇒ FactorizationMachineRegressor
Fit the model with given training data.
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 83 def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] _n_samples, n_features = x.shape if n_outputs > 1 @factor_mat = Numo::DFloat.zeros(n_outputs, @params[:n_factors], n_features) @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) n_outputs.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = single_fit(x, y[true, n]) } else @factor_mat, @weight_vec, @bias_term = single_fit(x, y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
120 121 122 123 124 125 126 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 120 def marshal_dump { params: @params, factor_mat: @factor_mat, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
130 131 132 133 134 135 136 137 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 130 def marshal_load(obj) @params = obj[:params] @factor_mat = obj[:factor_mat] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
107 108 109 110 111 112 113 114 115 116 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 107 def predict(x) check_sample_array(x) linear_term = @bias_term + x.dot(@weight_vec.transpose) factor_term = if @weight_vec.shape[1].nil? 0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0) else 0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose end linear_term + factor_term end |