Class: SVMKit::Ensemble::AdaBoostRegressor

Inherits:
Object
  • Object
show all
Includes:
Base::BaseEstimator, Base::Regressor
Defined in:
lib/svmkit/ensemble/ada_boost_regressor.rb

Overview

AdaBoostRegressor is a class that implements random forest for regression This class uses decision tree for a weak learner.

Reference

      1. Shrestha and D. P. Solomatine, “Experiments with AdaBoost.RT, an Improved Boosting Scheme for Regression,” Neural Computation 18 (7), pp. 1678–1710, 2006.

Examples:

estimator =
  SVMKit::Ensemble::AdaBoostRegressor.new(
    n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
estimator.fit(training_samples, traininig_values)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Regressor

#score

Constructor Details

#initialize(n_estimators: 10, threshold: 0.2, exponent: 1.0, criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ AdaBoostRegressor

Create a new regressor with random forest.



60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 60

def initialize(n_estimators: 10, threshold: 0.2, exponent: 1.0,
               criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
               max_features: nil, random_seed: nil)
  check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                                    max_features: max_features, random_seed: random_seed)
  check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
  check_params_float(threshold: threshold, exponent: exponent)
  check_params_string(criterion: criterion)
  check_params_positive(n_estimators: n_estimators, threshold: threshold, exponent: exponent,
                        max_depth: max_depth,
                        max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
                        max_features: max_features)
  @params = {}
  @params[:n_estimators] = n_estimators
  @params[:threshold] = threshold
  @params[:exponent] = exponent
  @params[:criterion] = criterion
  @params[:max_depth] = max_depth
  @params[:max_leaf_nodes] = max_leaf_nodes
  @params[:min_samples_leaf] = min_samples_leaf
  @params[:max_features] = max_features
  @params[:random_seed] = random_seed
  @params[:random_seed] ||= srand
  @estimators = nil
  @feature_importances = nil
  @rng = Random.new(@params[:random_seed])
end

Instance Attribute Details

#estimator_weightsNumo::DFloat (readonly)

Return the weight for each weak learner.



35
36
37
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 35

def estimator_weights
  @estimator_weights
end

#estimatorsArray<DecisionTreeRegressor> (readonly)

Return the set of estimators.



31
32
33
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 31

def estimators
  @estimators
end

#feature_importancesNumo::DFloat (readonly)

Return the importance for each feature.



39
40
41
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 39

def feature_importances
  @feature_importances
end

#rngRandom (readonly)

Return the random generator for random selection of feature index.



43
44
45
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 43

def rng
  @rng
end

Instance Method Details

#fit(x, y) ⇒ AdaBoostRegressor

Fit the model with given training data.

Raises:

  • (ArgumentError)


93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 93

def fit(x, y) # rubocop:disable Metrics/AbcSize
  check_sample_array(x)
  check_tvalue_array(y)
  check_sample_tvalue_size(x, y)
  # Check target values
  raise ArgumentError, 'Expect target value vector to be 1-D arrray' unless y.shape.size == 1
  # Initialize some variables.
  n_samples, n_features = x.shape
  @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
  @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
  observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
  @estimators = []
  @estimator_weights = []
  @feature_importances = Numo::DFloat.zeros(n_features)
  # Construct forest.
  @params[:n_estimators].times do |_t|
    # Fit weak learner.
    ids = SVMKit::Utils.choice_ids(n_samples, observation_weights, @rng)
    tree = Tree::DecisionTreeRegressor.new(
      criterion: @params[:criterion], max_depth: @params[:max_depth],
      max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
      max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values::int_max)
    )
    tree.fit(x[ids, true], y[ids])
    p = tree.predict(x)
    # Calculate errors.
    abs_err = ((p - y) / y).abs
    err = observation_weights[abs_err.gt(@params[:threshold])].sum
    break if err <= 0.0
    # Calculate weight.
    beta = err**@params[:exponent]
    weight = Math.log(1.fdiv(beta))
    # Store model.
    @estimators.push(tree)
    @estimator_weights.push(weight)
    @feature_importances += weight * tree.feature_importances
    # Update observation weights.
    update = Numo::DFloat.ones(n_samples)
    update[abs_err.le(@params[:threshold])] = beta
    observation_weights *= update
    observation_weights = observation_weights.clip(1.0e-15, nil)
    sum_observation_weights = observation_weights.sum
    break if sum_observation_weights.zero?
    observation_weights /= sum_observation_weights
  end
  @estimator_weights = Numo::DFloat.asarray(@estimator_weights)
  @feature_importances /= @estimator_weights.sum
  self
end

#marshal_dumpHash

Dump marshal data.



160
161
162
163
164
165
166
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 160

def marshal_dump
  { params: @params,
    estimators: @estimators,
    estimator_weights: @estimator_weights,
    feature_importances: @feature_importances,
    rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.



170
171
172
173
174
175
176
177
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 170

def marshal_load(obj)
  @params = obj[:params]
  @estimators = obj[:estimators]
  @estimator_weights = obj[:estimator_weights]
  @feature_importances = obj[:feature_importances]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::DFloat

Predict values for samples.



147
148
149
150
151
152
153
154
155
156
# File 'lib/svmkit/ensemble/ada_boost_regressor.rb', line 147

def predict(x)
  check_sample_array(x)
  n_samples, = x.shape
  predictions = Numo::DFloat.zeros(n_samples)
  @estimators.size.times do |t|
    predictions += @estimator_weights[t] * @estimators[t].predict(x)
  end
  sum_weight = @estimator_weights.sum
  predictions / sum_weight
end