Class: SVMKit::Preprocessing::StandardScaler
- Inherits:
-
Object
- Object
- SVMKit::Preprocessing::StandardScaler
- Includes:
- Base::BaseEstimator, Base::Transformer
- Defined in:
- lib/svmkit/preprocessing/standard_scaler.rb
Overview
Normalize samples by centering and scaling to unit variance.
Instance Attribute Summary collapse
-
#mean_vec ⇒ Numo::DFloat
readonly
Return the vector consists of the mean value for each feature.
-
#std_vec ⇒ Numo::DFloat
readonly
Return the vector consists of the standard deviation for each feature.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x) ⇒ StandardScaler
Calculate the mean value and standard deviation of each feature for scaling.
-
#fit_transform(x) ⇒ Numo::DFloat
Calculate the mean values and standard deviations, and then normalize samples using them.
-
#initialize ⇒ StandardScaler
constructor
Create a new normalizer for centering and scaling to unit variance.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#transform(x) ⇒ Numo::DFloat
Perform standardization the given samples.
Constructor Details
#initialize ⇒ StandardScaler
Create a new normalizer for centering and scaling to unit variance.
29 30 31 32 33 |
# File 'lib/svmkit/preprocessing/standard_scaler.rb', line 29 def initialize @params = {} @mean_vec = nil @std_vec = nil end |
Instance Attribute Details
#mean_vec ⇒ Numo::DFloat (readonly)
Return the vector consists of the mean value for each feature.
22 23 24 |
# File 'lib/svmkit/preprocessing/standard_scaler.rb', line 22 def mean_vec @mean_vec end |
#std_vec ⇒ Numo::DFloat (readonly)
Return the vector consists of the standard deviation for each feature.
26 27 28 |
# File 'lib/svmkit/preprocessing/standard_scaler.rb', line 26 def std_vec @std_vec end |
Instance Method Details
#fit(x) ⇒ StandardScaler
Calculate the mean value and standard deviation of each feature for scaling.
42 43 44 45 46 47 |
# File 'lib/svmkit/preprocessing/standard_scaler.rb', line 42 def fit(x, _y = nil) SVMKit::Validation.check_sample_array(x) @mean_vec = x.mean(0) @std_vec = x.stddev(0) self end |
#fit_transform(x) ⇒ Numo::DFloat
Calculate the mean values and standard deviations, and then normalize samples using them.
56 57 58 59 |
# File 'lib/svmkit/preprocessing/standard_scaler.rb', line 56 def fit_transform(x, _y = nil) SVMKit::Validation.check_sample_array(x) fit(x).transform(x) end |
#marshal_dump ⇒ Hash
Dump marshal data.
73 74 75 76 |
# File 'lib/svmkit/preprocessing/standard_scaler.rb', line 73 def marshal_dump { mean_vec: @mean_vec, std_vec: @std_vec } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
80 81 82 83 84 |
# File 'lib/svmkit/preprocessing/standard_scaler.rb', line 80 def marshal_load(obj) @mean_vec = obj[:mean_vec] @std_vec = obj[:std_vec] nil end |
#transform(x) ⇒ Numo::DFloat
Perform standardization the given samples.
65 66 67 68 69 |
# File 'lib/svmkit/preprocessing/standard_scaler.rb', line 65 def transform(x) SVMKit::Validation.check_sample_array(x) n_samples, = x.shape (x - @mean_vec.tile(n_samples, 1)) / @std_vec.tile(n_samples, 1) end |