Class: SVMKit::LinearModel::SVR
- Inherits:
-
SGDLinearEstimator
- Object
- SGDLinearEstimator
- SVMKit::LinearModel::SVR
- Includes:
- Base::Regressor
- Defined in:
- lib/svmkit/linear_model/svr.rb
Overview
SVR is a class that implements Support Vector Regressor with mini-batch stochastic gradient descent optimization.
Reference
-
Shalev-Shwartz and Y. Singer, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proc. ICML’07, pp. 807–814, 2007.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for SVR.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for SVR.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x, y) ⇒ SVR
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ SVR
constructor
Create a new regressor with Support Vector Machine by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ SVR
Create a new regressor with Support Vector Machine by the SGD optimization.
47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'lib/svmkit/linear_model/svr.rb', line 47 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon, max_iter: max_iter, batch_size: batch_size) super(reg_param: reg_param, fit_bias: fit_bias, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size, optimizer: optimizer, random_seed: random_seed) @params[:epsilon] = epsilon end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for SVR.
30 31 32 |
# File 'lib/svmkit/linear_model/svr.rb', line 30 def bias_term @bias_term end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
34 35 36 |
# File 'lib/svmkit/linear_model/svr.rb', line 34 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for SVR.
26 27 28 |
# File 'lib/svmkit/linear_model/svr.rb', line 26 def weight_vec @weight_vec end |
Instance Method Details
#fit(x, y) ⇒ SVR
Fit the model with given training data.
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# File 'lib/svmkit/linear_model/svr.rb', line 65 def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] n_features = x.shape[1] if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } else @weight_vec, @bias_term = partial_fit(x, y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
95 96 97 98 99 100 |
# File 'lib/svmkit/linear_model/svr.rb', line 95 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
104 105 106 107 108 109 110 |
# File 'lib/svmkit/linear_model/svr.rb', line 104 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
88 89 90 91 |
# File 'lib/svmkit/linear_model/svr.rb', line 88 def predict(x) check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |