Class: SVMKit::LinearModel::SVR

Inherits:
Object
  • Object
show all
Includes:
Base::BaseEstimator, Base::Regressor
Defined in:
lib/svmkit/linear_model/svr.rb

Overview

SVR is a class that implements Support Vector Regressor with mini-batch stochastic gradient descent optimization.

Reference

    1. Shalev-Shwartz and Y. Singer, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proc. ICML’07, pp. 807–814, 2007.

Examples:

estimator =
  SVMKit::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
estimator.fit(training_samples, traininig_target_values)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Regressor

#score

Constructor Details

#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ SVR

Create a new regressor with Support Vector Machine by the SGD optimization.

Parameters:

  • reg_param (Float) (defaults to: 1.0)

    The regularization parameter.

  • fit_bias (Boolean) (defaults to: false)

    The flag indicating whether to fit the bias term.

  • bias_scale (Float) (defaults to: 1.0)

    The scale of the bias term.

  • epsilon (Float) (defaults to: 0.1)

    The margin of tolerance.

  • max_iter (Integer) (defaults to: 1000)

    The maximum number of iterations.

  • batch_size (Integer) (defaults to: 20)

    The size of the mini batches.

  • optimizer (Optimizer) (defaults to: nil)

    The optimizer to calculate adaptive learning rate. Nadam is selected automatically on current version.

  • random_seed (Integer) (defaults to: nil)

    The seed value using to initialize the random generator.



49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# File 'lib/svmkit/linear_model/svr.rb', line 49

def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1,
               max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil)
  check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon)
  check_params_integer(max_iter: max_iter, batch_size: batch_size)
  check_params_boolean(fit_bias: fit_bias)
  check_params_type_or_nil(Integer, random_seed: random_seed)
  check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
                        max_iter: max_iter, batch_size: batch_size)
  @params = {}
  @params[:reg_param] = reg_param
  @params[:fit_bias] = fit_bias
  @params[:bias_scale] = bias_scale
  @params[:epsilon] = epsilon
  @params[:max_iter] = max_iter
  @params[:batch_size] = batch_size
  @params[:optimizer] = optimizer
  @params[:random_seed] = random_seed
  @params[:random_seed] ||= srand
  @weight_vec = nil
  @bias_term = nil
  @rng = Random.new(@params[:random_seed])
end

Instance Attribute Details

#bias_termNumo::DFloat (readonly)

Return the bias term (a.k.a. intercept) for SVR.

Returns:

  • (Numo::DFloat)

    (shape: [n_outputs])



32
33
34
# File 'lib/svmkit/linear_model/svr.rb', line 32

def bias_term
  @bias_term
end

#rngRandom (readonly)

Return the random generator for performing random sampling.

Returns:

  • (Random)


36
37
38
# File 'lib/svmkit/linear_model/svr.rb', line 36

def rng
  @rng
end

#weight_vecNumo::DFloat (readonly)

Return the weight vector for SVR.

Returns:

  • (Numo::DFloat)

    (shape: [n_outputs, n_features])



28
29
30
# File 'lib/svmkit/linear_model/svr.rb', line 28

def weight_vec
  @weight_vec
end

Instance Method Details

#fit(x, y) ⇒ SVR

Fit the model with given training data.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The training data to be used for fitting the model.

  • y (Numo::DFloat)

    (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.

Returns:

  • (SVR)

    The learned regressor itself.



77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# File 'lib/svmkit/linear_model/svr.rb', line 77

def fit(x, y)
  check_sample_array(x)
  check_tvalue_array(y)
  check_sample_tvalue_size(x, y)

  n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
  _n_samples, n_features = x.shape

  if n_outputs > 1
    @weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
    @bias_term = Numo::DFloat.zeros(n_outputs)
    n_outputs.times do |n|
      weight, bias = single_fit(x, y[true, n])
      @weight_vec[n, true] = weight
      @bias_term[n] = bias
    end
  else
    @weight_vec, @bias_term = single_fit(x, y)
  end

  self
end

#marshal_dumpHash

Dump marshal data.

Returns:

  • (Hash)

    The marshal data about SVR.



111
112
113
114
115
116
# File 'lib/svmkit/linear_model/svr.rb', line 111

def marshal_dump
  { params: @params,
    weight_vec: @weight_vec,
    bias_term: @bias_term,
    rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.

Returns:

  • (nil)


120
121
122
123
124
125
126
# File 'lib/svmkit/linear_model/svr.rb', line 120

def marshal_load(obj)
  @params = obj[:params]
  @weight_vec = obj[:weight_vec]
  @bias_term = obj[:bias_term]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::DFloat

Predict values for samples.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to predict the values.

Returns:

  • (Numo::DFloat)

    (shape: [n_samples, n_outputs]) Predicted values per sample.



104
105
106
107
# File 'lib/svmkit/linear_model/svr.rb', line 104

def predict(x)
  check_sample_array(x)
  x.dot(@weight_vec.transpose) + @bias_term
end