Class: SVMKit::LinearModel::SVR
- Inherits:
-
Object
- Object
- SVMKit::LinearModel::SVR
- Includes:
- Base::BaseEstimator, Base::Regressor
- Defined in:
- lib/svmkit/linear_model/svr.rb
Overview
SVR is a class that implements Support Vector Regressor with mini-batch stochastic gradient descent optimization.
Reference
-
Shalev-Shwartz and Y. Singer, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proc. ICML’07, pp. 807–814, 2007.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for SVR.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for SVR.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x, y) ⇒ SVR
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ SVR
constructor
Create a new regressor with Support Vector Machine by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ SVR
Create a new regressor with Support Vector Machine by the SGD optimization.
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# File 'lib/svmkit/linear_model/svr.rb', line 49 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:epsilon] = epsilon @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:optimizer] = optimizer @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for SVR.
32 33 34 |
# File 'lib/svmkit/linear_model/svr.rb', line 32 def bias_term @bias_term end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
36 37 38 |
# File 'lib/svmkit/linear_model/svr.rb', line 36 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for SVR.
28 29 30 |
# File 'lib/svmkit/linear_model/svr.rb', line 28 def weight_vec @weight_vec end |
Instance Method Details
#fit(x, y) ⇒ SVR
Fit the model with given training data.
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# File 'lib/svmkit/linear_model/svr.rb', line 77 def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] _n_samples, n_features = x.shape if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) n_outputs.times do |n| weight, bias = single_fit(x, y[true, n]) @weight_vec[n, true] = weight @bias_term[n] = bias end else @weight_vec, @bias_term = single_fit(x, y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
111 112 113 114 115 116 |
# File 'lib/svmkit/linear_model/svr.rb', line 111 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
120 121 122 123 124 125 126 |
# File 'lib/svmkit/linear_model/svr.rb', line 120 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
104 105 106 107 |
# File 'lib/svmkit/linear_model/svr.rb', line 104 def predict(x) check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |