Class: SVMKit::LinearModel::Ridge
- Inherits:
-
Object
- Object
- SVMKit::LinearModel::Ridge
- Includes:
- Base::BaseEstimator, Base::Regressor
- Defined in:
- lib/svmkit/linear_model/ridge.rb
Overview
Ridge is a class that implements Ridge Regression with stochastic gradient descent (SGD) optimization.
Reference
-
Shalev-Shwartz and Y. Singer, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proc. ICML’07, pp. 807–814, 2007.
-
-
Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum in deep learning,” Proc. ICML’13, pp. 1139–1147, 2013.
-
-
Hinton, N. Srivastava, and K. Swersky, “Lecture 6e rmsprop,” Neural Networks for Machine Learning, 2012.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept).
-
#rng ⇒ Random
readonly
Return the random generator for random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x, y) ⇒ Ridge
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, learning_rate: 0.01, decay: 0.9, momentum: 0.9, max_iter: 1000, batch_size: 10, random_seed: nil) ⇒ Ridge
constructor
Create a new Ridge regressor.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, learning_rate: 0.01, decay: 0.9, momentum: 0.9, max_iter: 1000, batch_size: 10, random_seed: nil) ⇒ Ridge
Create a new Ridge regressor.
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/svmkit/linear_model/ridge.rb', line 49 def initialize(reg_param: 1.0, fit_bias: false, learning_rate: 0.01, decay: 0.9, momentum: 0.9, max_iter: 1000, batch_size: 10, random_seed: nil) check_params_float(reg_param: reg_param, learning_rate: learning_rate, decay: decay, momentum: momentum) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(reg_param: reg_param, learning_rate: learning_rate, decay: decay, momentum: momentum, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:learning_rate] = learning_rate @params[:decay] = decay @params[:momentum] = momentum @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept).
33 34 35 |
# File 'lib/svmkit/linear_model/ridge.rb', line 33 def bias_term @bias_term end |
#rng ⇒ Random (readonly)
Return the random generator for random sampling.
37 38 39 |
# File 'lib/svmkit/linear_model/ridge.rb', line 37 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector.
29 30 31 |
# File 'lib/svmkit/linear_model/ridge.rb', line 29 def weight_vec @weight_vec end |
Instance Method Details
#fit(x, y) ⇒ Ridge
Fit the model with given training data.
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
# File 'lib/svmkit/linear_model/ridge.rb', line 79 def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] _n_samples, n_features = x.shape if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) n_outputs.times do |n| weight, bias = single_fit(x, y[true, n]) @weight_vec[n, true] = weight @bias_term[n] = bias end else @weight_vec, @bias_term = single_fit(x, y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
113 114 115 116 117 118 |
# File 'lib/svmkit/linear_model/ridge.rb', line 113 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
122 123 124 125 126 127 128 |
# File 'lib/svmkit/linear_model/ridge.rb', line 122 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
106 107 108 109 |
# File 'lib/svmkit/linear_model/ridge.rb', line 106 def predict(x) check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |