Class: SVMKit::PolynomialModel::FactorizationMachineRegressor
- Inherits:
-
Object
- Object
- SVMKit::PolynomialModel::FactorizationMachineRegressor
- Includes:
- Base::BaseEstimator, Base::Regressor
- Defined in:
- lib/svmkit/polynomial_model/factorization_machine_regressor.rb
Overview
FactorizationMachineRegressor is a class that implements Factorization Machine with stochastic gradient descent (SGD) optimization.
Reference
-
Rendle, “Factorization Machines with libFM,” ACM Transactions on Intelligent Systems and Technology, vol. 3 (3), pp. 57:1–57:22, 2012.
-
-
Rendle, “Factorization Machines,” Proc. the 10th IEEE International Conference on Data Mining (ICDM’10), pp. 995–1000, 2010.
-
-
Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum in deep learning,” Proc. the 30th International Conference on Machine Learning (ICML’ 13), pp. 1139–1147, 2013.
-
-
Hinton, N. Srivastava, and K. Swersky, “Lecture 6e rmsprop,” Neural Networks for Machine Learning, 2012.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term for Factoriazation Machine.
-
#factor_mat ⇒ Numo::DFloat
readonly
Return the factor matrix for Factorization Machine.
-
#rng ⇒ Random
readonly
Return the random generator for random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Factorization Machine.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x, y) ⇒ FactorizationMachineRegressor
Fit the model with given training data.
-
#initialize(n_factors: 2, reg_param_bias: 1.0, reg_param_weight: 1.0, reg_param_factor: 1.0, init_std: 0.01, learning_rate: 0.01, decay: 0.9, momentum: 0.9, max_iter: 1000, batch_size: 10, random_seed: nil) ⇒ FactorizationMachineRegressor
constructor
Create a new regressor with Factorization Machine.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Constructor Details
#initialize(n_factors: 2, reg_param_bias: 1.0, reg_param_weight: 1.0, reg_param_factor: 1.0, init_std: 0.01, learning_rate: 0.01, decay: 0.9, momentum: 0.9, max_iter: 1000, batch_size: 10, random_seed: nil) ⇒ FactorizationMachineRegressor
Create a new regressor with Factorization Machine.
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 59 def initialize(n_factors: 2, reg_param_bias: 1.0, reg_param_weight: 1.0, reg_param_factor: 1.0, init_std: 0.01, learning_rate: 0.01, decay: 0.9, momentum: 0.9, max_iter: 1000, batch_size: 10, random_seed: nil) check_params_float(reg_param_bias: reg_param_bias, reg_param_weight: reg_param_weight, reg_param_factor: reg_param_factor, init_std: init_std, learning_rate: learning_rate, decay: decay, momentum: momentum) check_params_integer(n_factors: n_factors, max_iter: max_iter, batch_size: batch_size) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(n_factors: n_factors, reg_param_bias: reg_param_bias, reg_param_weight: reg_param_weight, reg_param_factor: reg_param_factor, learning_rate: learning_rate, decay: decay, momentum: momentum, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:n_factors] = n_factors @params[:reg_param_bias] = reg_param_bias @params[:reg_param_weight] = reg_param_weight @params[:reg_param_factor] = reg_param_factor @params[:init_std] = init_std @params[:learning_rate] = learning_rate @params[:decay] = decay @params[:momentum] = momentum @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:random_seed] = random_seed @params[:random_seed] ||= srand @factor_mat = nil @weight_vec = nil @bias_term = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term for Factoriazation Machine.
40 41 42 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 40 def bias_term @bias_term end |
#factor_mat ⇒ Numo::DFloat (readonly)
Return the factor matrix for Factorization Machine.
32 33 34 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 32 def factor_mat @factor_mat end |
#rng ⇒ Random (readonly)
Return the random generator for random sampling.
44 45 46 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 44 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Factorization Machine.
36 37 38 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 36 def weight_vec @weight_vec end |
Instance Method Details
#fit(x, y) ⇒ FactorizationMachineRegressor
Fit the model with given training data.
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 96 def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] _n_samples, n_features = x.shape if n_outputs > 1 @factor_mat = Numo::DFloat.zeros(n_outputs, @params[:n_factors], n_features) @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) n_outputs.times do |n| factor, weight, bias = single_fit(x, y[true, n]) @factor_mat[n, true, true] = factor @weight_vec[n, true] = weight @bias_term[n] = bias end else @factor_mat, @weight_vec, @bias_term = single_fit(x, y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
138 139 140 141 142 143 144 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 138 def marshal_dump { params: @params, factor_mat: @factor_mat, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
148 149 150 151 152 153 154 155 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 148 def marshal_load(obj) @params = obj[:params] @factor_mat = obj[:factor_mat] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
125 126 127 128 129 130 131 132 133 134 |
# File 'lib/svmkit/polynomial_model/factorization_machine_regressor.rb', line 125 def predict(x) check_sample_array(x) linear_term = @bias_term + x.dot(@weight_vec.transpose) factor_term = if @weight_vec.shape[1].nil? 0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0) else 0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose end linear_term + factor_term end |