Class: SVMKit::Ensemble::RandomForestClassifier

Inherits:
Object
  • Object
show all
Includes:
Base::BaseEstimator, Base::Classifier
Defined in:
lib/svmkit/ensemble/random_forest_classifier.rb

Overview

RandomForestClassifier is a class that implements random forest for classification.

Examples:

estimator =
  SVMKit::Ensemble::RandomForestClassifier.new(
    n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
estimator.fit(training_samples, traininig_labels)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Classifier

#score

Constructor Details

#initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ RandomForestClassifier

Create a new classifier with random forest.



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 52

def initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
               max_features: nil, random_seed: nil)
  SVMKit::Validation.check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                                                       max_features: max_features, random_seed: random_seed)
  SVMKit::Validation.check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
  SVMKit::Validation.check_params_string(criterion: criterion)
  SVMKit::Validation.check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
                                           max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
                                           max_features: max_features)
  @params = {}
  @params[:n_estimators] = n_estimators
  @params[:criterion] = criterion
  @params[:max_depth] = max_depth
  @params[:max_leaf_nodes] = max_leaf_nodes
  @params[:min_samples_leaf] = min_samples_leaf
  @params[:max_features] = max_features
  @params[:random_seed] = random_seed
  @params[:random_seed] ||= srand
  @estimators = nil
  @classes = nil
  @feature_importances = nil
  @rng = Random.new(@params[:random_seed])
end

Instance Attribute Details

#classesNumo::Int32 (readonly)

Return the class labels.



29
30
31
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 29

def classes
  @classes
end

#estimatorsArray<DecisionTreeClassifier> (readonly)

Return the set of estimators.



25
26
27
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 25

def estimators
  @estimators
end

#feature_importancesNumo::DFloat (readonly)

Return the importance for each feature.



33
34
35
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 33

def feature_importances
  @feature_importances
end

#rngRandom (readonly)

Return the random generator for performing random sampling in the Pegasos algorithm.



37
38
39
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 37

def rng
  @rng
end

Instance Method Details

#apply(x) ⇒ Numo::Int32

Return the index of the leaf that each sample reached.



151
152
153
154
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 151

def apply(x)
  SVMKit::Validation.check_sample_array(x)
  Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose
end

#fit(x, y) ⇒ RandomForestClassifier

Fit the model with given training data.



81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 81

def fit(x, y)
  SVMKit::Validation.check_sample_array(x)
  SVMKit::Validation.check_label_array(y)
  SVMKit::Validation.check_sample_label_size(x, y)
  # Initialize some variables.
  n_samples, n_features = x.shape
  @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
  @params[:max_features] = [[1, @params[:max_features]].max, Math.sqrt(n_features).to_i].min
  @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
  # Construct forest.
  @estimators = Array.new(@params[:n_estimators]) do |_n|
    tree = Tree::DecisionTreeClassifier.new(
      criterion: @params[:criterion], max_depth: @params[:max_depth],
      max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
      max_features: @params[:max_features], random_seed: @params[:random_seed]
    )
    bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) }
    tree.fit(x[bootstrap_ids, true], y[bootstrap_ids])
  end
  # Calculate feature importances.
  @feature_importances = Numo::DFloat.zeros(n_features)
  @estimators.each { |tree| @feature_importances += tree.feature_importances }
  @feature_importances /= @feature_importances.sum
  self
end

#marshal_dumpHash

Dump marshal data.



158
159
160
161
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 158

def marshal_dump
  { params: @params, estimators: @estimators, classes: @classes,
    feature_importances: @feature_importances, rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.



165
166
167
168
169
170
171
172
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 165

def marshal_load(obj)
  @params = obj[:params]
  @estimators = obj[:estimators]
  @classes = obj[:classes]
  @feature_importances = obj[:feature_importances]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::Int32

Predict class labels for samples.



111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 111

def predict(x)
  SVMKit::Validation.check_sample_array(x)
  n_samples, = x.shape
  n_classes = @classes.size
  classes_arr = @classes.to_a
  ballot_box = Numo::DFloat.zeros(n_samples, n_classes)
  @estimators.each do |tree|
    predicted = tree.predict(x)
    n_samples.times do |n|
      class_id = classes_arr.index(predicted[n])
      ballot_box[n, class_id] += 1.0 unless class_id.nil?
    end
  end
  Numo::Int32[*Array.new(n_samples) { |n| @classes[ballot_box[n, true].max_index] }]
end

#predict_proba(x) ⇒ Numo::DFloat

Predict probability for samples.



131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 131

def predict_proba(x)
  SVMKit::Validation.check_sample_array(x)
  n_samples, = x.shape
  n_classes = @classes.size
  classes_arr = @classes.to_a
  ballot_box = Numo::DFloat.zeros(n_samples, n_classes)
  @estimators.each do |tree|
    probs = tree.predict_proba(x)
    tree.classes.size.times do |n|
      class_id = classes_arr.index(tree.classes[n])
      ballot_box[true, class_id] += probs[true, n] unless class_id.nil?
    end
  end
  (ballot_box.transpose / ballot_box.sum(axis: 1)).transpose
end