Class: SVMKit::LinearModel::SVC
- Inherits:
-
Object
- Object
- SVMKit::LinearModel::SVC
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/linear_model/svc.rb
Overview
SVC is a class that implements Support Vector Classifier with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz and Y. Singer, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proc. ICML’07, pp. 807–814, 2007.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for SVC.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for SVC.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ SVC
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, probability: false, normalize: true, random_seed: nil) ⇒ SVC
constructor
Create a new classifier with Support Vector Machine by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, probability: false, normalize: true, random_seed: nil) ⇒ SVC
Create a new classifier with Support Vector Machine by the SGD optimization.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/svmkit/linear_model/svc.rb', line 51 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, probability: false, normalize: true, random_seed: nil) SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale) SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size) SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, probability: probability, normalize: normalize) SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) SVMKit::Validation.check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:probability] = probability @params[:normalize] = normalize @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil @prob_param = nil @classes = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for SVC.
31 32 33 |
# File 'lib/svmkit/linear_model/svc.rb', line 31 def bias_term @bias_term end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
35 36 37 |
# File 'lib/svmkit/linear_model/svc.rb', line 35 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
39 40 41 |
# File 'lib/svmkit/linear_model/svc.rb', line 39 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for SVC.
27 28 29 |
# File 'lib/svmkit/linear_model/svc.rb', line 27 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
123 124 125 126 127 |
# File 'lib/svmkit/linear_model/svc.rb', line 123 def decision_function(x) SVMKit::Validation.check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |
#fit(x, y) ⇒ SVC
Fit the model with given training data.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
# File 'lib/svmkit/linear_model/svc.rb', line 81 def fit(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) SVMKit::Validation.check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) @prob_param = Numo::DFloat.zeros(n_classes, 2) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 weight, bias = binary_fit(x, bin_y) @weight_vec[n, true] = weight @bias_term[n] = bias @prob_param[n, true] = if @params[:probability] SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(weight.transpose) + bias, bin_y) else Numo::DFloat[1, 0] end end else negative_label = y.to_a.uniq.sort.first bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = binary_fit(x, bin_y) @prob_param = if @params[:probability] SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose) + @bias_term, bin_y) else Numo::DFloat[1, 0] end end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
164 165 166 167 168 169 170 171 |
# File 'lib/svmkit/linear_model/svc.rb', line 164 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, prob_param: @prob_param, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
175 176 177 178 179 180 181 182 183 |
# File 'lib/svmkit/linear_model/svc.rb', line 175 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @prob_param = obj[:prob_param] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
133 134 135 136 137 138 139 140 141 |
# File 'lib/svmkit/linear_model/svc.rb', line 133 def predict(x) SVMKit::Validation.check_sample_array(x) return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# File 'lib/svmkit/linear_model/svc.rb', line 147 def predict_proba(x) SVMKit::Validation.check_sample_array(x) if @classes.size > 2 probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) return (probs.transpose / probs.sum(axis: 1)).transpose end n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) probs[true, 0] = 1.0 - probs[true, 1] probs end |